1,500 research outputs found

    D-brane Wess--Zumino actions, T-duality and the cosmological constant

    Full text link
    A geometrical formulation of the T-duality rules for type II superstring Ramond--Ramond fields is presented. This is used to derive the Wess-Zumino terms in superstring D-brane actions, including terms proportional to the mass parameter of the IIA theory, thereby completing partial results in the literature. For non-abelian world-volume gauge groups the massive type IIA D-brane actions contain non-abelian Chern--Simons terms for the Born--Infeld gauge potential, implying a quantization of the IIA cosmological constant.Comment: Version to be published in Physics Letters (minor corrections

    Comments on Three-Branes

    Get PDF
    The Born--Infeld-like effective world-volume theory of a single 3-brane is deduced from a manifestly space-time supersymmetric description of the corresponding DD-brane. This is shown to be invariant under SL(2,R)SL(2,R) transformations that act on the abelian gauge field as well as the bulk fields. The effective theory of two nearby parallel three-branes involves massive world-volume supermultiplets which transform under SL(2,Z)SL(2,Z) into the dyonic solitons of four-dimensional N=4N=4 spontaneously broken SU(2)SU(2) Yang--Mills theory.Comment: 13 pages, LATEX. Minor typos correcte

    The first cosmic ray albedo proton map of the Moon

    Get PDF
    [1] Neutrons emitted from the Moon are produced by the impact of galactic cosmic rays (GCRs) within the regolith. GCRs are high-energy particles capable of smashing atomic nuclei in the lunar regolith and producing a shower of energetic protons, neutrons and other subatomic particles. Secondary particles that are ejected out of the regolith become “albedo” particles. The neutron albedo has been used to study the hydrogen content of the lunar regolith, which motivates our study of albedo protons. In principle, the albedo protons should vary as a function of the input GCR source and possibly as a result of surface composition and properties. During the LRO mission, the total detection rate of albedo protons between 60 MeV and 150 MeV has been declining since 2009 in parallel with the decline in the galactic cosmic ray flux, which validates the concept of an albedo proton source. On the other hand, the average yield of albedo protons has been increasing as the galactic cosmic ray spectrum has been hardening, consistent with a disproportionately stronger modulation of lower energy GCRs as solar activity increases. We construct the first map of the normalized albedo proton emission rate from the lunar surface to look for any albedo variation that correlates with surface features. The map is consistent with a spatially uniform albedo proton yield to within statistical uncertainties

    Radiation modeling in the Earth and Mars atmospheres using LRO/CRaTER with the EMMREM Module

    Get PDF
    Abstract We expand upon the efforts of Joyce et al. (2013), who computed the modulation potential at the Moon using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on the Lunar Reconnaissance Orbiter (LRO) spacecraft along with data products from the Earth-Moon-Mars Radiation Environment Module (EMMREM). Using the computed modulation potential, we calculate galactic cosmic ray (GCR) dose and dose equivalent rates in the Earth and Mars atmospheres for various altitudes over the course of the LRO mission. While we cannot validate these predictions by directly comparable measurement, we find that our results conform to expectations and are in good agreement with the nearest available measurements and therefore may be used as reasonable estimates for use in efforts in risk assessment in the planning of future space missions as well as in the study of GCRs. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other solar energetic particles measurements) is an online system designed to provide the scientific community with a comprehensive resource on the radiation environments of the inner heliosphere. The data products shown here will be incorporated into PREDICCS in order to further this effort and daily updates will be made available on the PREDICCS website (http://prediccs.sr.unh.edu). Key Points We model GCR dose and dose equivalent rates in Earth and Mars atmospheres Dose rates are in reasonable agreement with nearby measurements Data products will soon be made available on PREDICCS website

    Creating a Healthy Classroom Environment in Multicultural Counseling Courses

    Get PDF
    To assist educators in developing transformative learning environments, and effectively engaging in difficult dialogues regarding multicultural counseling topics, we conducted a qualitative study to systemically examine the perceptions and reactions of twenty graduate counselor education students enrolled in a multicultural counseling course. In this particular course, students experienced various learning environments all designed to enhance the topic of the day. Students were instructed to journal their thoughts, which became the raw data that was later, analyzed for themes. Students reported a need to be in an environment where there was trust, an ongoing need to reflect on the content, and difficulty discussing their school experiences with friends/family who are not in the helping profession

    Radiation environment at the Moon: Comparisons of transport code modeling and measurements from the CRaTER instrument

    Get PDF
    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER), an instrument carried on the Lunar Reconnaissance Orbiter spacecraft, directly measures the energy depositions by solar and galactic cosmic radiations in its silicon wafer detectors. These energy depositions are converted to linear energy transfer (LET) spectra. High LET particles, which are mainly high‐energy heavy ions found in the incident cosmic ray spectrum, or target fragments and recoils produced by protons and heavier ions, are of particular importance because of their potential to cause significant damage to human tissue and electronic components. Aside from providing LET data useful for space radiation risk analyses for lunar missions, the observed LET spectra can also be used to help validate space radiation transport codes, used for shielding design and risk assessment applications, which is a major thrust of this work. In this work the Monte Carlo transport code HETC‐HEDS (High‐Energy Transport Code‐Human Exploration and Development in Space) is used to estimate LET contributions from the incident primary ions and their charged secondaries produced by nuclear collisions as they pass through the three pairs of silicon detectors. Also in this work, the contributions to the LET of the primary ions and their charged secondaries are analyzed and compared with estimates obtained using the deterministic space radiation code HZETRN 2010, developed at NASA Langley Research Center. LET estimates obtained from the two transport codes are compared with measurements of LET from the CRaTER instrument during the mission. Overall, a comparison of the LET predictions of the HETC‐HEDS code to the predictions of the HZETRN code displays good agreement. The code predictions are also in good agreement with the CRaTER LET measurements above 15 keV/µm but differ from the measurements for smaller values of LET. A possible reason for this disagreement between measured and calculated spectra below 15 keV/µm is an inadequate representation of the light ion spectra in HETC‐HEDS and HZETRN code calculations. It is also clear from the results of this work that Vavilov distributions need to be incorporated into the HETC‐HJEDS code before it will be able to recreate the observed LET spectra measured by the CRaTER instrument. Key Points Vavilov corrections should be incorporated into simulated results The predictions of the transport codes reasonably agree with the CRaTER LET The observed LET can be used to help validate space radiation transport codesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108081/1/swe20145.pd

    PI3K/mTOR Dual Inhibitor PF-04691502 Is a Schedule-Dependent Radiosensitizer for Gastroenteropancreatic Neuroendocrine Tumors

    Get PDF
    Patients with advanced-stage gastroenteropancreatic neuroendocrine tumors (GEP-NETs) have a poor overall prognosis despite chemotherapy and radiotherapy (e.g., peptide receptor radionuclide therapy (PRRT)). Better treatment options are needed to improve disease regression and patient survival. The purpose of this study was to examine a new treatment strategy by combining PI3K/mTOR dual inhibition and radiotherapy. First, we assessed the efficacy of two PI3K/mTOR dual inhibitors, PF-04691502 and PKI-402, to inhibit pAkt and increase apoptosis in NET cell lines (BON and QGP-1) and patient-derived tumor spheroids as single agents or combined with radiotherapy (XRT). Treatment with PF-04691502 decreased pAkt (Ser473) expression for up to 72 h compared with the control; in contrast, decreased pAkt expression was noted for less than 24 h with PKI-402. Simultaneous treatment with PF-04691502 and XRT did not induce apoptosis in NET cells; however, the addition of PF-04691502 48 h after XRT significantly increased apoptosis compared to PF-04691502 or XRT treatment alone. Our results demonstrate that schedule-dependent administration of a PI3K/mTOR inhibitor, combined with XRT, can enhance cytotoxicity by promoting the radiosensitivity of NET cells. Moreover, our findings suggest that radiotherapy, in combination with timed PI3K/mTOR inhibition, may be a promising therapeutic regimen for patients with GEP-NET

    Regulation of CD1 Antigen-presenting Complex Stability

    Get PDF
    For major histocompatibility complex class I and II molecules, the binding of specific peptide antigens is essential for assembly and trafficking and is at the center of their quality control mechanism. However, the role of lipid antigen binding in stabilization and quality control of CD1 heavy chain (HC).beta(2)-microglobulin (beta(2)m) complexes is unclear. Furthermore, the distinct trafficking and loading routes of CD1 proteins take them from mildly acidic pH in early endososmal compartments (pH 6.0) to markedly acidic pH in lysosomes (pH 5.0) and back to neutral pH of the cell surface (pH 7.4). Here, we present evidence that the stability of each CD1 HC.beta(2)m complex is determined by the distinct pH optima identical to that of the intracellular compartments in which each CD1 isoform resides. Although stable at acidic endosomal pH, complexes are only stable at cell surface pH 7.4 when bound to specific lipid antigens. The proposed model outlines a quality control program that allows lipid exchange at low endosomal pH without dissociation of the CD1 HC.beta(2)m complex and then stabilizes the antigen-loaded complex at neutral pH at the cell surface

    Compactification on negatively curved manifolds

    Get PDF
    We show that string/M theory compactifications to maximally symmetric space-times using manifolds whose scalar curvature is everywhere negative, must have significant warping, large stringy corrections, or both.Comment: 18 pages, JHEP3.cl

    Analysis of detector performance in a gigahertz clock rate quantum key distribution system

    Get PDF
    We present a detailed analysis of a gigahertz clock rate environmentally robust phase-encoded quantum key distribution (QKD) system utilizing several different single-photon detectors, including the first implementation of an experimental resonant cavity thin-junction silicon single-photon avalanche diode. The system operates at a wavelength of 850 nm using standard telecommunications optical fibre. A general-purpose theoretical model for the performance of QKD systems is presented with reference to these experimental results before predictions are made about realistic detector developments in this system. We discuss, with reference to the theoretical model, how detector operating parameters can be further optimized to maximize key exchange rates
    corecore