235 research outputs found

    Importance of space and competition in optimizing genetic control strategies.

    No full text
    Advances in the genetic modification of organisms are creating new opportunities for the control of insect pests of both agriculture and public health significance. The timing and sex specificity of lethal transgene activation can be tailored to enhance the pest population control efficiency of mass-released, genetically modified insects. We developed mathematical models to determine the optimal timing and sex specificity of lethal transgene activation for the control of different types of pest population. We show that optimal release strategies are not only sensitive to the parameters governing growth of the population but also can be drastically affected by the inclusion of insect stage structuring, competition, and space. We emphasize the necessity of including these additional levels of complexity in future theoretical assessments as they are likely important considerations for designing transgenic organisms as well as their application in genetic control

    Ignorance can be evolutionarily beneficial

    Full text link
    Information is increasingly being viewed as a resource used by organisms to increase their fitness. Indeed, it has been formally shown that there is a sensible way to assign a reproductive value to information and it is non-negative. However, all of this work assumed that information collection is cost-free. Here, we account for such a cost and provide conditions for when the reproductive value of information will be negative. In these instances, counter-intuitively, it is in the interest of the organism to remain ignorant. We link our results to empirical studies where Bayesian behaviour appears to break down in complex environments and provide an alternative explanation of lowered arousal thresholds in the evolution of sleep.Comment: 5 pages, submitte

    Parasite Replication and the Evolutionary Epidemiology of Parasite Virulence

    Get PDF
    Parasite virulence evolution is shaped by both within-host and population-level processes yet the link between these differing scales of infection is often neglected. Population structure and heterogeneity in both parasites and hosts will affect how hosts are exploited by pathogens and the intensity of infection. Here, it is shown how the degree of relatedness among parasites together with epidemiological parameters such as pathogen yield and longevity influence the evolution of virulence. Furthermore, the role of kin competition and the degree of cheating within highly structured parasite populations also influences parasite fitness and infectivity patterns. Understanding how the effects of within-host processes scale up to affect the epidemiology has importance for understanding host-pathogen interactions

    Temporal dynamics of trauma memory persistence

    Get PDF

    A Model Framework to Estimate Impact and Cost of Genetics-Based Sterile Insect Methods for Dengue Vector Control

    Get PDF
    Vector-borne diseases impose enormous health and economic burdens and additional methods to control vector populations are clearly needed. The Sterile Insect Technique (SIT) has been successful against agricultural pests, but is not in large-scale use for suppressing or eliminating mosquito populations. Genetic RIDL technology (Release of Insects carrying a Dominant Lethal) is a proposed modification that involves releasing insects that are homozygous for a repressible dominant lethal genetic construct rather than being sterilized by irradiation, and could potentially overcome some technical difficulties with the conventional SIT technology. Using the arboviral disease dengue as an example, we combine vector population dynamics and epidemiological models to explore the effect of a program of RIDL releases on disease transmission. We use these to derive a preliminary estimate of the potential cost-effectiveness of vector control by applying estimates of the costs of SIT. We predict that this genetic control strategy could eliminate dengue rapidly from a human community, and at lower expense (approximately US2∌30percaseaverted)thanthedirectandindirectcostsofdisease(meanUS 2∌30 per case averted) than the direct and indirect costs of disease (mean US 86–190 per case of dengue). The theoretical framework has wider potential use; by appropriately adapting or replacing each component of the framework (entomological, epidemiological, vector control bio-economics and health economics), it could be applied to other vector-borne diseases or vector control strategies and extended to include other health interventions

    Mechanistic modelling of within-mosquito viral dynamics: Insights into infection and dissemination patterns

    Get PDF
    Vector or host competence can be defined as the ability of an individual to become infected and subsequently transmit a pathogen. Assays to measure competence play a key part in the assessment of the factors affecting mosquito-borne virus transmission and of potential pathogen-blocking control tools for these viruses. For mosquitoes, competence for arboviruses can be measured experimentally and results are usually analysed using standard statistical approaches. Here we develop a mechanistic approach to studying within-mosquito virus dynamics that occur during vector competence experiments. We begin by developing a deterministic model of virus replication in the mosquito midgut and subsequent escape and replication in the hemocoel. We then extend this to a stochastic model to capture the between-individual variation observed in vector competence experiments. We show that the dose-response of the probability of mosquito midgut infection and variation in the dissemination rate can be explained by stochastic processes generated from a small founding population of virions, caused by a relatively low rate of virion infection of susceptible cells. We also show that comparing treatments or species in competence experiments by fitting mechanistic models could provide further insight into potential differences. Generally, our work adds to the growing body of literature emphasizing the importance of intrinsic stochasticity in biological systems

    How and when to end the COVID-19 lockdown: an optimization approach

    Get PDF
    Countries around the world are in a state of lockdown to help limit the spread of SARS-CoV-2. However, as the number of new daily confirmed cases begins to decrease, governments must decide how to release their populations from quarantine as efficiently as possible without overwhelming their health services. We applied an optimal control framework to an adapted Susceptible-Exposure-Infection-Recovery (SEIR) model framework to investigate the efficacy of two potential lockdown release strategies, focusing on the UK population as a test case. To limit recurrent spread, we find that ending quarantine for the entire population simultaneously is a high-risk strategy, and that a gradual re-integration approach would be more reliable. Furthermore, to increase the number of people that can be first released, lockdown should not be ended until the number of new daily confirmed cases reaches a sufficiently low threshold. We model a gradual release strategy by allowing different fractions of those in lockdown to re-enter the working non-quarantined population. Mathematical optimization methods, combined with our adapted SEIR model, determine how to maximize those working while preventing the health service from being overwhelmed. The optimal strategy is broadly found to be to release approximately half the population 2–4 weeks from the end of an initial infection peak, then wait another 3–4 months to allow for a second peak before releasing everyone else. We also modeled an “on-off” strategy, of releasing everyone, but re-establishing lockdown if infections become too high. We conclude that the worst-case scenario of a gradual release is more manageable than the worst-case scenario of an on-off strategy, and caution against lockdown-release strategies based on a threshold-dependent on-off mechanism. The two quantities most critical in determining the optimal solution are transmission rate and the recovery rate, where the latter is defined as the fraction of infected people in any given day that then become classed as recovered. We suggest that the accurate identification of these values is of particular importance to the ongoing monitoring of the pandemic

    Sex ratio distorting microbes exacerbate arthropod extinction risk in variable environments

    Get PDF
    Maternally-inherited sex ratio distorting microbes (SRDMs) are common among arthropod species. Typically, these microbes cause female-biased sex ratios in host broods, either by; killing male offspring, feminising male offspring, or inducing parthenogenesis. As a result, infected populations can experience drastic ecological and evolutionary change. The mechanism by which SRDMs operate is likely to alter their impact on host evolutionary ecology; despite this, the current literature is heavily biased towards a single mechanism of sex ratio distortion, male-killing. Furthermore, amidst the growing concerns surrounding the loss of arthropod diversity, research into the impact of SRDMs on the viability of arthropod populations is generally lacking. In this study, using a theoretical approach, we model the epidemiology of an understudied mechanism of microbially-induced sex ratio distortion—feminisation—to ask an understudied question—how do SRDMs impact extinction risk in a changing environment? We constructed an individual-based model and measured host population extinction risk under various environmental and epidemiological scenarios. We also used our model to identify the precise mechanism modulating extinction. We find that the presence of feminisers increases host population extinction risk, an effect that is exacerbated in highly variable environments. We also identified transmission rate as the dominant epidemiological trait responsible for driving extinction. Finally, our model shows that sex ratio skew is the mechanism driving extinction. We highlight feminisers and, more broadly, SRDMs as important determinants of the resilience of arthropod populations to environmental change
    • 

    corecore