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Ecosystem dynamics are driven by both biotic and abiotic processes, and
perturbations can push ecosystems into novel dynamical regimes. Plant–
plant, plant–soil and mycorrhizal associations all affect plant ecosystem
dynamics; however, the direction and magnitude of these effects vary by
context and their contribution to ecosystem resilience over long time periods
remains unknown. Here, using a mathematical framework, we investigate
the effects of plant feedbacks and mycorrhiza on plant–nutrient interactions.
We show evidence for strong nutrient controlled feedbacks, moderation by
mycorrhiza and influence on ecological resilience. We use this model to
investigate the resilience of a longitudinal palaeoecological birch–δ15N inter-
action to plant–soil feedbacks and mycorrhizal associations. The birch–δ15N
system demonstrated high levels of resilience. Mycorrhiza were predicted to
increase resilience by supporting plant–nitrogen uptake and immobilizing
excess nitrogen; in contrast, long-term enrichment in available nitrogen by
plant–soil feedbacks is expected to decrease ecological resilience.

provided by Cronfa at Swansea 
1. Introduction
Plants require soil nutrients for growth and actively influence nutrient cycles
such as nitrogen. Such plant–soil feedbacks include the uptake and retention
of nitrogen in plant tissues, release of nitrogen into leaf litter and woody
debris, and support of ectomycorrhizal fungi (ECMs) that can influence plant
access to multiple soil resources to support further plant growth. These
plant–fungi associations have been shown to provide up to 80% of a plant’s
nitrogen requirements [1] and thus play a fundamental role in promoting
resilience of populations and ecosystem functioning; however, in some
cases, ECMs compete with plants for resources by immobilizing nitrogen in
mycelia [2] and/or inhibiting plant access to nitrogen [3], thus modulating the
availability and mineralization of nitrogen [4] to support plant growth and
potentially destabilizing plant–nitrogen interactions. Whether ECMs support or
suppress plant growth depends on the abundance of host plant species, type of
microbial associations, life cycle stage of the plant, nitrogen availability in the
ecosystem and other environmental conditions [2,5]. Furthermore, the relative
importance of plant–plant interactions and plant–soil feedbacks in determining
plant dynamics [6] and the potential mitigating effect of mycorrhiza [7] remains
a contemporary research topic (e.g. [5]). Such complexity challenges efforts to
predict the stability and resilience of plant–nitrogen interactions over periods of
environmental change. Palaeoecological proxy data on plant biomass and terres-
trial nitrogen availability provide unique and valuable long-term observations
required to assess the resilience of ecological interactions subject to environmental
perturbations operating over centuries and/or millennia [8].
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Here, we hypothesize that mycorrhizal associations
contribute to ecosystem resilience by modifying interactions
between plants and available nutrients. We use a mathematical
framework, built upon previous work [9–12], to investigate the
contribution of mycorrhiza to plant–nitrogen dynamics and
ultimately ecological resilience. We then fit this model to
a palaeoecological birch–nitrogen time series to assess the
resilience of a natural system to alterations in plant–nutrient
abundances and interactions with mycorrhiza.

2. Material and methods
2.1. Mathematical model
To investigate how the presence of mycorrhiza affect plant (P)–
nitrogen (N) dynamics, and more broadly ecological resilience,
we construct a mathematical model of plant and nitrogen
dynamics. The model builds on those used to interrogate
plant–nitrogen interactions from palaeoecological data [8–11].
Population growth is dependent on available nitrogen and
plants influence ecosystem-scale nitrogen availability through
the release of decaying tissues. ECMs can affect plant growth
by moderating nitrogen uptake and/or competing for nitrogen
[5] immobilizing plant-available nitrogen [13]. Mycorrhiza
affect nitrogen loss rates from the system and/or help recycle
organic forms of nitrogen that can be used by plants [4]. Given
this, we focus on the effects of ECMs on plant nitrogen uptake
and immobilization. Our model framework is of the form:

dN
dt

¼ l� f(N, P)� j(N, M)� mnN þ g(P) (2:1)

and

dP
dt

¼ rf(N, P)� h(P)P� m pP, (2:2)

where, in equation (2.1) describing the nutrient (N) dynamics,
λ is the allochthonous input rate of nitrogen into the system,
f (N, P) is a function describing nitrogen uptake by plants (see
below). j(N, M ) is the immobilization of nitrogen by mycorrhiza
(M). This is not independent of other factors (such as carbon–
nitrogen feedbacks or competition between mycorrhiza and
other microbes) and to capture this breadth of outcomes we
define j(N, M ) = ±γN M, (where γ is the rate of immobilization).
μn is the loss of nitrogen from the system through volatilization,
dentrification or leaching, and g(P) is a function describing the
recycling of nitrogen from decaying plant biomass (see below).

In equation (2.2) describing the plant dynamics, r is the plant
population growth rate, as noted above f (N, P) is the uptake
of nitrogen by the population for plant growth, h(P) is a
density-dependent plant feedback term (h(P) ¼ nPb) and μp is
the (instantaneous) plant death rate.

Uptake rate. The uptake rate of nitrogen by plants is described
by:

f (N, P) ¼ (a0NP), (2:3)

where α0 is the uptake coefficient describing the use of available
nitrogen to support plant population growth. Nitrogen uptake
is modulated by mycorrhiza according to α0 = α(1 + bM), where
b∈ [−1, 1], such that mycorrhiza can behave mutualistically
and increase (+) or parasitically and inhibit (−) plant access to
sources of available nitrogen.

Nitrogen release rate. Nitrogen can be released back into the
system as a function of plant biomass losses. We describe this
process as a delayed response to plant biomass with:

g(P) ¼ m phP(t� t), (2:4)

where μp is the instantaneous death rate of the population, η is the
proportion of plant biomass returned as available nitrogen and τ is
the time lag between the release of plant biomass and transform-
ation into available nitrogen. Given that nitrogen availability is
structured through the soil profile (e.g. [5]), this time delay cap-
tures the release of nitrogen from decaying plant biomass before
it can be used by the plant or modulated by the mycorrhiza.

2.2. Analysis
The model analysis proceeds by addressing three questions
(i) how does nitrogen uptake affect plant population growth,
(ii) how do mycorrhiza moderate plant nitrogen uptake and
ecosystem-scale nitrogen availability and (iii) how is resilience
of plant–nitrogen dynamics affected by plant–soil feedbacks,
density-dependent population growth and modulation of soil
resources by mycorrhiza. We use analytical (e.g. local stability
analysis) and numerical (e.g. numerical integration) methods
for model analysis (see electronic supplementary material for
fuller details). We then fit models to a long-term palaeoecological
birch–δ15N dataset and assess ecological resilience.
3. Results
3.1. Nutrient effects on plant dynamics
The effect of nitrogen uptake on plant population growth
((1/P)(dP)/(dt)) is estimated by:

1
P
dP
dt

¼ r[a0N]� nPb � m p: (3:1)

From this, positive plant population growth (fitness) occurs
when r[a0N] . (nPb þ m p). This inequality can be investigated
further when plant populations are at equilibrial levels. This is
P* = [(rα0N− μp)/ν]

(1/β). At equilibrium, a baseline amount of
nitrogen is required for positive plant population growth to
occur (i.e. plant birth rate exceeds plant death rate). As mycor-
rhiza can act mutualistically (increase) or parasitically (inhibit)
to affect plant nitrogen uptake (α0 = α(1 ±M)), this influences
plant population growth.

3.1.1. Dynamics
To explore the specific mechanisms by which nitrogen avail-
ability affects plant dynamics, a limiting case of the full
model can be derived.

If in the absence of plant density dependence, the
nitrogen uptake rate exceeds background losses (e.g. by deni-
trification) and/or immobilization of nitrogen by mycorrhiza
(αP≫ (μn + γM)), then the nitrogen–plant dynamics can be
represented by:

dN
dt

¼ l� a0NPþ m phP(t� t) (3:2)

and

dP
dt

¼ ra0NP� m pP: (3:3)

If these nutrient dynamics act on a faster timescale than the
plant dynamics then the steady state nutrient dynamics (N) are:

N ¼ lþ m phP(t� t)

a0P
: (3:4)

So the plant dynamics can then be approximated by:

dP
dt

¼ r(lþ m phP(t� t))� m pP: (3:5)
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For small time delays τ→ 0 then the solution to this
expression for the plant dynamics at time T is:

P(T) ¼ rl
m p(rh� 1)

(exp(tm p(rh� 1))� 1): (3:6)

Provided η < 1 then the plant dynamics will asymptote
and equilibriate at (rλ)/(μp(rη− 1)). This equation shows that
with greater allochthonous inputs of nitrogen (λ) or slower
releases of nitrogen from decaying plant matter (μp(rη− 1)),
there will be a higher equilibrium plant population level
(P(T )). This introduces nutrient-driven (donor-controlled)
feedback mechanisms that can stabilize the plant dynamics.

For a given rate of external inputs of nitrogen (λ), the rate
at which nitrogen is recycled from decaying plant biomass (η)
has a strong effect on plant population dynamics (electronic
supplementary material, figure S1). High rates of release of
plant-derived nitrogen destabilize the dynamics (leading to
exponential plant population increases); increasing the back-
ground availability of nitrogen (λ) exacerbates the rate of
this exponential increase (electronic supplementary material,
figure S1a). Lower rates of nitrogen release from decaying
biomass stabilize plant population dynamics while increases
in background supplies of nitrogen raise the realized equili-
brium population level (electronic supplementary material,
figure S1b).
3.2. Mycorrhiza influence nutrient–plant dynamics
Given the plant–nutrient dynamics (equations (2.1)–(2.2)), the
steady-state level of available nitrogen (N*) is given:

N� ¼ lþ m phP
�

a0P� þ gMþ mn
: (3:7)

As might be expected, increases in uptake by plants
(α0P*), immobilization by mycorrhiza (γM) or loss of nitrogen
(μn) will all lead to lower steady-state levels of nitrogen. In
contrast, increases in the allochthonous inputs of nitrogen
(λ) and/or releases of nitrogen from decaying plant matter
(μpηP*) will lead to higher steady-state levels of nitrogen.

Mutualistic mycorrhiza or parasitic mycorrhiza interact
with plant–nutrient dynamics to affect levels of available
nitrogen and nitrogen limitation of plant population growth
(electronic supplementary material, figure S2). In general,
mutualistic mycorrhiza (when α0 = α(1 +M)) favour stable
plant–nutrient interactions (electronic supplementary
material, figure S2a). When mycorrhizae behave mutualisti-
cally, rising plant biomass and low levels of mycorrhizal
biomass lead to asymptotic increases in available nitrogen.
In contrast, parasitic mycorrhiza (when α0 = α(1−M), redu-
cing plant nitrogen uptake) can destabilize plant–nutrient
dynamics (electronic supplementary material, figure S2b).
In this situation, increasing mycorrhizal biomass results
in unregulated increases in available nitrogen (electronic
supplementary material, figure S2b) and destabilizes the
dynamics (electronic supplementary material, figure S3).
3.3. Effect of biotic feedbacks on resilience of plant–
nitrogen interactions

To determine the resilience of the plant–nitrogen system we
use local stability analysis. We define resilience as the decay
rate of perturbations back to the steady states and this rate
is determined from the real part of the dominant eigenvalue
associated with the local stability matrix (see electronic
supplementary material). We use this approach to determine
how resilience is affected by biotic feedbacks from plants and
mycorrhiza.

The resilience of plant–nutrient dynamics is dependent on
interactions with mutualistic mycorrhiza (when α0 = α(1 +M))
(figure 1). Increases in the proportion of plant biomass
recycled as available nitrogen (η) decreases the resilience of
the system (figure 1), such that any perturbation will grow
over time, moving the system away from its current state.
However this plant–soil feedback can be moderated by
other biotic factors such as the rate of immobilization (γ).
At low levels of plant–nitrogen recycling, higher rates of
immobilization by mutualistic mycorrhiza leads to greater
system resilience (figure 1a,c); however, there is a threshold
point in the amount of plant-derived nitrogen beyond
which increases in mycorrhizal immobilization results in
lower resilience.

Incorporating plant density-dependent plant dynamics
(h(P) ¼ nPb) alters the shape of the resilience curve and the
relative effect of immobilization at low levels of plant-derived
nitrogen feedback (η) (figure 1c). Yet, the threshold point at
which plant release rates lead to low resilience is the same
for both the density-dependent and density-independent
models (figure 1c).

Whenmycorrhiza behave parasitically (when α0 = α(1−M)),
the plant–nitrogen system is never resilient (i.e. resilience <0)
(figure 1b,d ). In this situation, higher rates of mycorrhizal
immobilization lead to lower system resilience in all
circumstances.
3.4. Model–data comparison
To investigate the role of mycorrhiza on the resilience of
plant–nutrient systems, we fit the model (equations
(2.1)–(2.2)) to a 5000 year palaeoecological proxy time series
of plant biomass (based on pollen accumulation rates) and
nitrogen availability from Dubh-Lochan (Great Glen,
Scotland) [11,14] using a Bayesian state space approach (see
electronic supplementary material). The series spans the
early to mid-Holocene period (10 700 to 5200 cal. yrs BP)
and shows long-term declines in both birch and nitrogen avail-
ability after the first 2000 years (see electronic supplementary
material).

Comparing stochastic plant density-independent and den-
sity-dependent dynamic models to the data suggests that a
plant density-independent model together with mutualistic
mycorrhizal effects provides the most parsimonious descrip-
tion of the birch–nitrogen dynamics at Dubh-Lochan
(electronic supplementary material, figure S4; x2diff ¼ 0:159
on 2d.f., p = 0.924).

Using the parametrized density-independent plant–
nutrient model (and observed relative abundances of birch
and nitrogen), changes in predicted resilience of the plant–
nutrient interaction at Dubh-Lochan can be determined
from the local stability matrix (used for the model
analysis—see electronic supplementary material). Figure 2
shows predicted resilience for the long-term birch–nitrogen
system for four key parameters: rate of resource uptake (α),
estimated mycorrhizal biomass (M), biomass release rate (η)
and mycorrhizal immobilization rate (γ). Credible intervals
from key posterior parameter distributions at each time
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Figure 2. Predicted resilience of the birch–nitrogen system at Dubh-Lochan for a range of model parameter values: (a) the predicted plant nutrient uptake rate (α),
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point reveal how variation in parameters influences predicted
resilience of the overall system. Increases in nutrient uptake
rate (α) increase system resilience (i.e. small perturbations
will decay away, figure 2a); however, increasing plant-derived
available nitrogen (η) reduced resilience (i.e. any perturbation
will grow over time, figure 2c). In general, greater biomass of
mycorrhiza (M) further increases resilience (figure 2b). The
predicted immobilization rate (γ) varied over a narrow
range of parameter values and the system remained resilient
across all of them (figure 2d ).
rnal/rsbl
Biol.Lett.16:20190441
4. Discussion
Here, we have investigated the role of biotic interactions on
the dynamics and resilience of plant–nutrient interactions.
We show that nutrient-controlled (donor-controlled) feedbacks
can determine plant population dynamics and equilibrium
states (equations (3.5) and (3.6)). How nutrients flow through
the system, their availability and their immobilization deter-
mine plant population levels (electronic supplementary
material, figure S1a,b). Our model predictions show that
high levels of plant-derived nitrogen enrichment can destabi-
lize coupled plant–nitrogen dynamics. Immobilization of
nitrogen by mycorrhizal associations can offset this effect
(i.e. via the microbial bottleneck, sensu [15]) and improve
resilience, but only at low levels of plant-derived nitrogen
inputs. When nutrients increase beyond a threshold point,
immobilization of nitrogen by mycorrhiza was predicted to
reduced resilience. Similarly, direct interference in plant nitro-
gen uptake by mycorrhiza (i.e. parasitism) led to reduced
resilience in all circumstances. Thus biotic interactions can
strongly influence nutrient cycling [16] and plant performance
[6] by dampening or exacerbating feedback effects.

How important are these processes in real ecosystems?
Our model–data comparison with palaeoecological birch–δ15N
data showed evidence for donor-controlled plant–nitrogen
dynamics and mutualistic interactions with mycorrhizal
fungi. Increasing plant nitrogen uptake had a positive
effect on system resilience (figure 2a). Mycorrhiza were also
associated with greater resilience (figure 2b), likely by
promoting and regulating access to alternative available
nitrogen sources (e.g. [17]). Our results conform with obser-
vations from modern ecosystems that although mycorrhizae
have the potential to behave parasitically, mutualistic
behaviour is more likely [18], especially in nitrogen poor
environments [19].
Predicted immobilization rates, like mycorrhizal biomass,
varied over a narrow range of values and—contrary to
our model results—always led to greater system resilience
(figure 2d ). ECMs can immobilize nitrogen in relatively
recalcitrant hyphae, which become part of the soil organic
matter after they die, thus promoting nitrogen retention
and regulating the rate of recycling of organic nitrogen [19].
This mechanism is predicted to improve resilience of birch–
nitrogen interactions, likely by offsetting the negative
effects of plant-driven feedbacks (figure 2c). That nitrogen
immobilization has a prevalent role in birch–ECM dominated
forests and plant dynamics are heavily influenced by nitrogen–
carbon–microbe interactions [5] highlights that alternative
sources of (organic) nitrogen (e.g. amino acids—[17]) may be
highly influential in these ecosystem dynamics [4]. Together
with long palaeo ecological records, the dynamics of ECMs
and the sources of nitrogen availability in forest ecosystem
resilience warrants much more in-depth scrutiny.

This is—to our knowledge—the first attempt to incorpor-
ate the role of mycorrhizal association into a plant–nitrogen
dynamic model fitted to long-term palaeoecological data
and used to assess ecosystem resilience. The results support
the important role of biotic controls in nutrient cycling (e.g.
[4,9]) and driving ecosystem resilience. A key limitation
however is the current lack of continuous palaeoecological
records of mycorrhizal biomass concurrent with other proxies
[20]. Future work should focus on linking carbon–nitrogen–
microbe dynamics to plant–nutrient interactions, dynamics
and resilience. These caveats notwithstanding we show that
knowledge of the type, direction and magnitude of biotic
interactions is critically important in determining the
dynamics, stability and resilience of these ecological systems.
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