
ORIGINAL RESEARCH
published: 10 June 2020

doi: 10.3389/fpubh.2020.00262

Frontiers in Public Health | www.frontiersin.org 1 June 2020 | Volume 8 | Article 262

Edited by:

Zisis Kozlakidis,

International Agency For Research On

Cancer (IARC), France

Reviewed by:

Gui-Quan Sun,

North University of China, China

Sandro Rolesu,

Istituto Zooprofilattico Sperimentale

della Sardegna (IZS), Italy

*Correspondence:

Thomas Rawson

thomas.rawson@zoo.ox.ac.uk

Michael B. Bonsall

michael.bonsall@zoo.ox.ac.uk

Specialty section:

This article was submitted to

Infectious Diseases – Surveillance,

Prevention and Treatment,

a section of the journal

Frontiers in Public Health

Received: 03 May 2020

Accepted: 22 May 2020

Published: 10 June 2020

Citation:

Rawson T, Brewer T, Veltcheva D,

Huntingford C and Bonsall MB (2020)

How and When to End the COVID-19

Lockdown: An Optimization

Approach. Front. Public Health 8:262.

doi: 10.3389/fpubh.2020.00262

How and When to End the COVID-19
Lockdown: An Optimization
Approach
Thomas Rawson 1*, Tom Brewer 1, Dessislava Veltcheva 1, Chris Huntingford 2 and

Michael B. Bonsall 1*

1Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom, 2UK Centre

for Ecology and Hydrology, Wallingford, United Kingdom

Countries around the world are in a state of lockdown to help limit the spread

of SARS-CoV-2. However, as the number of new daily confirmed cases begins to

decrease, governments must decide how to release their populations from quarantine as

efficiently as possible without overwhelming their health services. We applied an optimal

control framework to an adapted Susceptible-Exposure-Infection-Recovery (SEIR) model

framework to investigate the efficacy of two potential lockdown release strategies,

focusing on the UK population as a test case. To limit recurrent spread, we find that

ending quarantine for the entire population simultaneously is a high-risk strategy, and

that a gradual re-integration approach would be more reliable. Furthermore, to increase

the number of people that can be first released, lockdown should not be ended until

the number of new daily confirmed cases reaches a sufficiently low threshold. We

model a gradual release strategy by allowing different fractions of those in lockdown to

re-enter the working non-quarantined population. Mathematical optimization methods,

combined with our adapted SEIR model, determine how to maximize those working

while preventing the health service from being overwhelmed. The optimal strategy is

broadly found to be to release approximately half the population 2–4 weeks from the

end of an initial infection peak, then wait another 3–4 months to allow for a second

peak before releasing everyone else. We also modeled an “on-off” strategy, of releasing

everyone, but re-establishing lockdown if infections become too high. We conclude that

the worst-case scenario of a gradual release is more manageable than the worst-case

scenario of an on-off strategy, and caution against lockdown-release strategies based on

a threshold-dependent on-off mechanism. The two quantities most critical in determining

the optimal solution are transmission rate and the recovery rate, where the latter is

defined as the fraction of infected people in any given day that then become classed

as recovered. We suggest that the accurate identification of these values is of particular

importance to the ongoing monitoring of the pandemic.
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1. INTRODUCTION

1.1. History of SARS-CoV-2 to Date
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is a novel coronavirus that has provoked the global pandemic
of COVID-19. First reported in the city of Wuhan, China, its
emergence quickly triggered a ‘lockdown’ within Wuhan and the
surrounding cities (1), requiring people to remain at home, only
leaving for essential journeys. Since then the virus has spread
rapidly worldwide, leading the World Health Organization to
declare a global pandemic on the 11th of March. Globally,
the outbreak has spread to 210 countries and territories, with
3,007,194 confirmed cases, 207,265 deaths and 883,298 recovered
individuals, as of the 27th of April. [Viewed on April 27, 2020,
10:42 GMT (2, 3)].

Containment of the virus has proven challenging. Although
some patients will require intensive care, others have unreported
mild symptoms, with as many as 17.9% of infected individuals
possibly being asymptomatic (4). Those with compromised
immunities, underlying health conditions, and of old age, are
most at risk of developing acute respiratory distress syndrome
(ARDS) and subsequent respiratory failure, necessitating the
use of mechanical ventilators in a dedicated intensive care unit
(ICU) (5). This mass spread of infection, and increasing pressure
on hospital capacity has led the UK to follow the example of
neighboring European countries by officially implementing a
lockdown as of March 23rd. While this appears to have slowed
the spread of infection, the cost to the economy of such measures
is considerable, with the first 1.5 months of lockdown estimated
to have cost the UK 3.4% of its GDP (6). With a viable vaccine
still several months or years away, lockdown measures will
eventually need to be lifted, but this must be done without risk
of overwhelming the health service. If all restrictions are lifted
universally, this could trigger a rapid resurgence of infections and
cause further death.

Here we consider a two-way balance which aims to (i)
maximize the number of people able to work outside of
lockdown, while (ii) ensuring that the number of people with
COVID-19 requiring medical help at no point crosses a threshold
beyond which hospitals are unable to cope. As an immediate
termination of lockdown for all is likely to trigger a surge in
infections, a graded easing of lockdown restrictions is likely
required. The focus of our analysis is to understand the optimal
pathway by which to release people as safely as possible back into
a general and growing non-quarantined set of workers.

1.2. Mathematical Modeling
To understand how to restart the economy yet avoid the
saturation of health services, we present decision-making as a
problem in optimal control. To determine an optimal solution
requires two definitions. The first is a system of process-
based differential equations whose boundary conditions or other
attributes can be varied by policy decisions. The second definition
is an objective functionmetric, which depends on the balance and
extent to which our two conditions are fulfilled. The aim is to
solve the differential equations, and find decisions affecting their
boundary conditions that are optimal andmaximize the objective

function. Our equation set is based on a standard Susceptible,
Exposed, Infected, Recovered (SEIR) model framework (7). Each
of the four compartments has a modeled population, and as
time evolves, people move through each class toward recovery
(or death). The novel part of our analysis is that the SEIR
equations are solved for two groups (i.e., communities). The
first community is a non-quarantined group, and during the
full lockdown, this represents the essential workers required
to maintain health provision, or essential services. The second
community is those in quarantine. The main distinction between
the non-quarantine and quarantine groups is that, in the latter,
lockdown causes a much lower rate of virus transmission.

SEIR-based equations are solved for non-quarantine and
quarantine groups, connected by modeled release strategies from
lockdown. That is, we allow different fractions of the quarantined
group to move into the non-quarantined group, and at different
times. For each potential strategy of movement between the
two groups, an objective function is calculated—some metric
describing the desirability of such a strategy. This is high when
many people are removed from quarantine, as they are available
to work—a desirable outcome. However, its value switches to
a near-infinite negative should the health service threshold be
crossed due to high infection numbers. Our model calculates
the highest possible objective function (the optimal strategy) and
returns the number of release dates, their time of occurrence,
and the number of people at each time. For comparison, we
perform parallel simulations, where we release all in quarantine
to the non-quarantine pool, but allow the return to quarantine
later if necessary, should infections risk exceeding the capacity of
the health services. We herein refer to this as a lockdown “on-
off release” strategy, and again find optimal timings and number
of releases.

No mathematical model, especially for something as
complicated as virus transmission and human behaviors, can
make predictions accurate to within a small margin of error.
However, models are especially useful in two circumstances, and
that we exploit. First, although simulations may lack absolute
precision, predictions will have some level of robustness. Such
predictions give strong indications of expected responses to a
range of different boundary conditions, i.e., alternative release
scenarios. Numerical model flexibility and speed of operation
enables “what if?” questions to be asked of alternative forms of
graded lockdown release. Second, by repeated operation of a
model, it is possible to scan across ranges of parameter values.
After governments start to release people, changes to infection
levels can be compared against ensembles of simulations with
perturbed parameters. Data-model comparison allows selection
of the most appropriate parameter value; an approach sometimes
referred to as “adaptive learning.” The trajectory for that value
becomes a more reliable forecast for the days and weeks beyond
the available data. Evidence this approach is feasible is illustrated
in data of infections in countries before and during a lockdown.
Although there is substantial geographic variation, all curves
have similar forms, amenable to parameterization. Indeed,
politicians have frequently described a mathematical functional
form, with the expression “flattening the curve,” used to explain
why lockdown is essential to avoid overwhelming health services.
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Our aim is to generate dynamical predictions and help
inform the debate as to future lockdown release options. Each
simulation can be readily understood in terms of policy decisions,
and mathematically this implies careful parameterization. Our
model is parameter sparse, yet sufficiently complex to capture
a broad range of options. Critically, each parameter is related
to understandable quantities characterizing infection levels or
lockdown decisions. A central part of our analysis, in the absence
of much knowledge of the SARS-CoV-2 virus, is to vary our
fundamental parameters to determine their effect on the optimal
strategy. This identification of sensitivity aids understanding
and can identify research priorities crucial to enhancing our
understanding and ability to manage the COVID-19 pandemic.

2. METHODS

2.1. Model Framework
Our model considers two parallel SEIR (Susceptible, Exposed,
Infected, Recovered) systems, one describing the spread of
disease in the quarantined ‘lockdown’ population, and the other
capturing the spread amongst those at work. The key difference
between our two SEIR pools (those in lockdown and those who
are not) is that transmission of the disease is assumed to be lower
for those in a state of lockdown due to the self-isolation measures
in place. This means that the susceptible population (SQ) are
still able to become infected (moving to EQ) as they leave their
homes for essential trips, or from people they share homes with,
albeit at a greatly reduced rate relative to those not in a state
of lockdown (S). Under full lockdown, the latter pool contains
only front-line workers who are unable to adopt social-distancing
measures. This is captured by the following system of ordinary
differential equations:

dS

dt
= −βS(t)

I(t)+ IQ(t)

N(t)+ NQ(t)
− µS(t)+ u(t)SQ(t), (1)

dE

dt
= βS(t)

I(t)+ IQ(t)

N(t)+ NQ(t)
− (µ + σ )E(t)+ u(t)EQ(t), (2)

dI

dt
= σE(t)− (α + µ + γ )I(t)+ u(t)IQ(t), (3)

dR

dt
= γ I(t)− µR(t)+u(t)RQ(t), (4)

dSQ
dt

= −cβSQ(t)
I(t)+ IQ(t)

N(t)+ NQ(t)
− µSQ(t)− u(t)SQ(t), (5)

dEQ
dt

= cβSQ(t)
I(t)+ IQ(t)

N(t)+ NQ(t)
− (µ + σ )EQ(t)− u(t)EQ(t),

(6)

dIQ
dt

= σEQ(t)− (α + µ + γ )IQ(t)− u(t)IQ(t), (7)

dRQ
dt

= γ IQ(t)− µRQ(t)− u(t)RQ(t), (8)

whereN(t) = S(t)+E(t)+I(t)+R(t), andNQ(t) = SQ(t)+EQ(t)+
IQ(t) + RQ(t), and the subscript Q denotes that an individual is
currently under lockdown conditions.

FIGURE 1 | Schematic diagram depicting the movement of individuals through

the SEIR network. The function u(t) describes the action of the strategy

employed to end lockdown, as people are released from the quarantined

group. The arrows linking the two groups operate in both directions, to allow

for any “on-off” strategy where people are returned to quarantine.

Our equations describe the movement of individuals through
four stages, from being initially susceptible to the disease
(S, SQ), contracting the disease but not yet being infectious
(E, EQ), becoming infectious (I, IQ), and finally recovering
from the disease (R, RQ), at which point we assume an
individual becomes immune to future infections (Figure 1). The
function u(t) describes the release strategy employed, controlling
the movement of individuals between the ‘quarantined’ and
‘released’ groups.

The lowercase Greek letters in Equations (1)–(8) represent
our rate parameters. Firstly, β represents the transmission rate
of the disease. Significant work early in the pandemic used
available data to quantify the rate of SARS-CoV-2 transmission
and a range of estimates have already been reported in the
literature. Kucharski et al. (8) calculated an R0 of 1.15–4.77
when fitting to data from the initial outbreak in Wuhan. This
corresponds in our case to a β ranging from roughly 0.25–
1.06. Similarly, when fitting to data from the initial outbreak
in Italy, Giordano et al. (9) estimated a total transmission rate
of 1.048, split between the four different infected classes they
considered. These data-fit estimations risk failing to capture the
impact of asymptomatic or unrecorded individuals, especially for
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the wider-ranging classes of our model, with a vision toward
informing policy. For this reason, our sensitivity analyses (below)
also consider transmission rates up to twice as high as these
values. Note that we consider the population of both I and
IQ to impact the spread of disease, as the quarantined group
are still assumed to mix occasionally with the population (for
instance, when leaving their homes to shop for essential items).
The parameter c is a scalar between 0 and 1 that captures how
effective the self-isolation (i.e., lockdown) measures enforced are
in reducing the rate of SARS-CoV-2 transmission.

µ represents the natural, background death rate of the
population regardless of the impact of COVID-19, and can have
important implications for the strength of herd-immunity effects
on disease dynamics, as this is the only mechanism in our
model through which the recovered population is reduced. The
parameter α represents the rate of death directly attributed to
SARS-CoV-2. While the mortality rate of SARS-CoV-2 has been
demonstrated to vary substantially between age classes (10–12),
in its current form our model does not incorporate age-structure
and we therefore adopt an age-invariant mortality rate.

The parameter σ represents the incubation rate. The exposed
population classes, (E, EQ), capture the effect of the lag between
people becoming infected (and incubating the disease for several
days) and becoming infectious. Understanding the size of
this effect is of great importance when assessing strategies in
which a second lockdown may be enforced because efforts to
monitor the subsequent spread of infection must consider the
upcoming, but lagged, threat posed by the exposed class. Lastly,
γ represents the recovery rate and describes how long individuals
remain infectious.

In the present work, we used the population of the
United Kingdom as an example to inform our initial proportion
of the population in quarantine. Using Labor Force Survey
data from 2018/19, the Institute for Fiscal Studies estimate that
7.1 million adults across the UK are in the set of key-worker
guidelines set out by the UK government (13). We define this
10.42% of the population as not currently being in lockdown, and
initiate the model with the remaining population in lockdown.
Initial numbers of individuals in each class were calculated using
estimates presented by Flaxman et al. (14), with the assumed
values valid as of the 28th of March 2020.

All model variables, parameters and the values used for these
are presented in Table 1. The full set of parameter estimates
obtained, with links to the original sources, have been collated
and made available in Appendix 1 to aid the modeling efforts of
other research groups.

2.2. Model Assumptions
Firstly, the extent and longevity of immunity to SARS-CoV-2,
and its effect on the dynamics of the pandemic, remain open, high
priority research questions (22, 23). Recentmodeling efforts have,
however, thus far shown little difference when incorporating
the impact of waning immunity (9). We therefore assume that,
once developed, immunity provides complete and indefinite
protection against SARS-CoV-2.

The parsimonious nature of our model was chosen to
enhance the ease of interpretation of our results and, most

importantly, to enable the model to be quickly adapted to non-
UK populations. Different countries currently provide varying
levels of epidemiological detail in their reporting of COVID-
19 cases. By reducing the number of classes and parameters
considered, our model is amenable to a wider range of countries
and scenarios than the more specific model structures currently
published (9, 24). The result of this modeling choice is that our
system captures the broad-scale dynamics of the disease resulting
from different lockdown exit-strategies rather than making
accurate predictions of the number of infected individuals,
which will require continuous, data-driven adaptations applied
to our framework.

While the model parameters are obtained from current
research estimates (see Table 1), these values will continue to
evolve as the scientific community updates and improves these
estimates in light of new data and understanding. As such, our
model code was designed with usability in mind, such that
all simulations can be quickly re-calculated to reflect any new
research. In light of this present uncertainty, our current results
are shown as a series of sensitivity analyses, so that the underlying
infection dynamics in response to each release strategy, and
parameter-dependence, are clear.

2.3. Optimal Control
The primary challenge facing policy makers currently is in
devising how to return the population to work most safely,
ending the lockdown and its detrimental consequences on the
economy. The objective is to release as many people from
lockdown, as soon as possible, without overwhelming the health
system with a subsequent resurgence of infections. This objective
neatly fits the general framework of optimal control problems,
a branch of mathematical study that seeks to maximize a
certain objective functional through the use of available controls,
while limited by constraints. In our model, the controls are
the methods by which we release people from the quarantined
classes, described by the function u(t), and our constraint is our
infection capacity, the maximum number of people our health
system can effectively support at a given time. A solution is
optimal if it returns the maximum number of people to work
without breaking this constraint.

We consider two distinct strategies for ending the lockdown;
a “gradual release” strategy, whereby individuals are slowly, but
permanently, released from quarantine in staggered waves until
the entire population has been transferred from the quarantined
class, and an “on-off release” strategy, whereby the lockdown
is lifted for the entire population simultaneously, but can
subsequently be reinstated when necessary (the mathematical
formulation of these strategies is outlined below). In each case,
we seek to ensure that any strategy employed does not cause
the total number of infected individuals (I + IQ) to surpass a
certain threshold at any time. This threshold, Ithresh, represents
the maximum carrying capacity of the health service that cannot
be exceeded. Ferguson et al. take the surge capacity of ICU beds
in the UK to be 14 per 100,000 people (10), equating to a total
of 9,240 ICU beds. They further note that as many as 30% of
hospitalizations may require critical care. Combined with their
estimate that 4.4% of all infections will require hospitalizations,
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this provides a range of values for Ithresh to be considered in our
sensitivity analysis, centered around an approximate threshold of
4,000,000 infected individuals.

Many formal optimal control approaches employ the use of
“adjoint equations” to minimize the Hamiltonian of the ODE
system. While we also pursued this approach, it requires a
continuous-time form for the control function u(t), which (i)
displayed extreme sensitivity in relation to any chosen objective
functional, and (ii) is unlikely to be representative of lockdown
release which, even if gradual, will still be managed with
distinct groups of people leaving at different times. Our primary
results presented in the following section are instead derived
from an iterative process in which multiple different release
times and portions of the population are trialed across various
ranges, with the optimal choice being that which maximizes
our objective function. All code used to perform these optimal
control approaches was performed in Matlab, and is available at:
https://osf.io/hrt2k/.

2.3.1. Gradual Release

A gradual release strategy aims to end the lockdown of the public
from quarantine through multiple staggered releases. Expressed
mathematically, we seek to release M1 people at time T1, while
ensuring that I + IQ < Ithresh at all times. We iterate across a
large mesh of potential values forM1 and T1, and for each trial we
calculate the objective functional C1 = M1 −T1 − J(I, IQ), where
J(I, IQ) is a penalty function that heavily penalizes any iteration
that results in I(t)+ IQ(t) > Ithresh for any t. Formally

J(I, IQ) =

{

∞, if I(t)+ IQ(t) > Ithresh for any t.
0, otherwise.

(9)

Therefore, the optimum choice of M1 and T1 are those which
maximize C1. In short, this approach calculates how to release
as many individuals as possible, as early as possible, without
breaking the infection carrying capacity. After this optimum
solution is found, a second release of M2 people at time T2 can
be similarly calculated after the first release, if people still remain
in quarantine.

To calculate these outputs, we used ode45, a fourth-order
Runge-Kutta solver in Matlab, to solve the system of Equations
(1)–(8) using the initial conditions in Table 1 for t from 0 to
T1. At this point we subtracted M1 individuals proportionally
from SQ, EQ, IQ, and RQ and added these to S, E, I, and R. The
system was then solved again from these new points for t from
T1 to 400 days. To allow understanding of the effect of different
values of some of the parameters presented inTable 1, we operate
our model for a range of parameter values. Specifically, this was
performed for a range of different transmission rates, β , infection
thresholds, Ithresh, and transmission reduction, c. Figure 2 depicts
an illustrative example of a gradual release scenario.

2.3.2. On-Off Release

The “on-off” release strategy considers releasing the quarantined
population all at once, with the aim to then return everyone to
lockdown when required, should the number of infected exceed
a threshold which threatens to overwhelm medical services.
Formally, we seek i pairs of Toff

i and Ton
i , a time at which to end

quarantine, and a time to re-instate it, respectively. Consistent
with the gradual release strategy, we iteratively trial multiple
potential values of Toff

i and Ton
i (where Ton

i > Toff
i ).

For each choice of Toff
i and Ton

i we calculate an objective

functional Ci = (Ton
i − Toff

i ) − Toff
i − J(I, IQ), where J(I, IQ)

is as defined above. The optimum choice of Toff
i and Ton

i is the
pair that maximizes C. In short, we seek the longest possible
duration out of quarantine, as soon as possible, without breaking
the infection carrying capacity. We plot an example of an on-off
release scenario in Figure 3 below.

3. RESULTS

Figures 2, 3 are example simulations, to illustrate general model
behavior, but are not optimal solutions. We now consider model
projections, within our optimal framework. Our results are
plotted from t = 0 days, where the initial conditions used are
the estimated populations as of March 28th (14).

3.1. Gradual Release
The number of people to be released from quarantine, M1,
was divided into a mesh of 1,000 equally-spaced points ranging
from 0 to the total quarantined population, NQ(0). Each one of
these trial values for M1 was simulated against a mesh of 1,000
equally-spaced points ranging from 0 to 400 for an associated
release time T1. Once an optimum solution was found, a second
optimum release pair, M2 individuals released at time T2 was
also found. Unless specified otherwise, the base values used are
Ithresh = 4 × 106, c = 0.05, β = 2.35, µ = 1

80×365 , σ =

0.1961, α = 0.00657, and γ = 0.2222 (these values are the
same as presented in Table 1). The optimum solution was found
for a range of values of β , c and Ithresh, to observe how these
uncertainties affect the optimum solution. These solutions are
presented in Figure 4, where the top row (plots A–C) display the
total quarantined population (NQ) under the optimum release
strategy, and the second row displays the associated total infected
population (I + IQ).

From Figure 4, we see that varying the infection threshold,
Ithresh, or the lockdown effectiveness, c, has the greatest impact
on Mi the number of people released, while the time of initial
release Ti remains mostly unchanged. This suggests that an
increase of 1,000,000 to Ithresh can allow ∼4,000,000 more
people to be released from quarantine. Changes to transmission
(β) instead primarily adjusts the time at which releases are
made, with the number of people released remaining relatively
consistent. Figure 4B shows that for each trialed transmission
value, ∼50% of the quarantined population can be released once
the current infected population reaches a sufficiently low level.
In each case, there is approximately a 2-weeks period between
when the peak in infected individuals has ended and when
individuals are released from quarantine. Figure 4C shows that,
for less-effective lockdown measures, more individuals are able
to be released from quarantine once the initial peak has ended.
This seemingly counter-intuitive result is due to the reduced
lockdown effectiveness meaning that a greater proportion of the
quarantined population have been infected while in quarantine,
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TABLE 1 | Definitions of the variables and parameters used in the SEIR model, of Equations (1)–(4) for the non-quarantined population, and Equations (5)–(8) for

quarantined groups.

Model variables

Variable Definition Initial Conditions and definition of N and NQ Reference Source

S(t) Non-quarantined susceptibles S(0) = 6,909,850 (14)

E(t) Non-quarantined exposed E(0) = 188,961 (14)

I(t) Non-quarantined infected I(0) = 2,599 (14)

R(t) Non-quarantined recovered R(0) = 75 (14)

N(t) Total non-quarantined population N = S+ E + I+ R

SQ(t) Quarantined susceptibles SQ(0) = 58, 154, 660 (13, 14)

EQ(t) Quarantined exposed EQ(0) = 1, 590, 333 (13, 14)

IQ(t) Quarantined infected IQ(0) = 21, 875 (13, 14)

RQ(t) Quarantined recovered RQ(0) = 628 (13, 14)

NQ(t) Total quarantined population NQ = SQ + EQ + IQ + RQ

Model parameters

Constant Definition Value Reference source

β Transmission rate 0.6–2.35 (8, 9, 15, 16)

µ Natural death rate 1
80·365 (15)

σ Incubation rate 0.1961 (1, 17–19)

c Reduced rate of transmission due to quarantine 0.05

α Disease-induced death rate 0.00657 (11, 12, 20)

γ Recovery rate 0.2222 (16)

Ithresh Total infection capacity 4,000,000 (10, 21)

FIGURE 2 | Example of a gradual release from quarantine. Here, 20 million people are moved out of quarantine at t = 80 days, followed by the remaining population

at t = 200 days. Variables EQ and E are not plotted. Model parameters are those of Table 1. (A) Quarantined population. (B) Non-quarantined population.

and have since entered the recovered class. This means they
can be re-added to the working pool without substantial risk of
further infections. This result however clearly depends on the
strength of any acquired immunity.

Additional to the graphical sensitivity analysis presented in
Figure 4, a quantitative sensitivity analysis was also conducted
on each model parameter. For each parameter, we calculated the
total sensitivity index (25), STi , a variance-based sensitivitymetric
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FIGURE 3 | Example of an “on-off” release from quarantine. Here quarantine is ended at t = 50 days, and then reinstated at t = 80 days. Quarantine then ends again

at t = 150 days. Variables EQ and E are not plotted. Parameter values are those of Table 1. (A) Quarantined population. (B) Non-quarantined population.

FIGURE 4 | Optimum gradual release strategies for a range of different values of Ithresh (infection threshold), β (transmission rate) and c (lockdown effectiveness), as

marked. Plots (A–C) show the total quarantined population, displaying when releases from quarantine are made by the instantaneous decreases. Plots (D–F) depict

the associated total infected population (I+ IQ) associated with each optimum release strategy.
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that shows how “important” a model parameter is in affecting
a certain model outcome. In this study, the model outcome
considered is the objective function, C, for our optimum strategy.
Defined formally, the total sensitivity index for parameter i

is STi = 1 −
V(E(Y|X∼i))

V(Y)
, where Y is the model outcome

monitored, and Xi is the parameter considered. X∼i here
represents fixing all parameters except for parameter i. The total
sensitivity index is equal to 1 minus the variance in the expected
outcomewhen all parameters except the one in question are fixed,
divided by the variance if no parameters are fixed.

In essence, for each model parameter a value between 0
and 1 is calculated that describes how sensitive the optimum
release strategy is to that parameter, with a value nearer unity
being more sensitive. Total sensitivity indexes were calculated for
β , σ ,α, γ , c, and Ithresh. In descending order, these were estimated
through Monte Carlo sampling to be: γ : 0.4978, β : 0.3928,
Ithresh : 0.1994, σ : 0.0958, c : 0.0018,α : 0.0006. We therefore find
that our optimum release strategy is not strongly dependent
on the values of the disease-induced death rate, the lockdown
effectiveness, or the incubation rate (α, c, or σ ), and that in
monitoring the effectiveness and outcome of a release strategy,
the recovery rate and transmission rate of the disease should be
most closely studied.

3.2. On-Off Releases
To determine the optimal timings for an “on-off” lockdown
release strategy, both the times at which quarantine was ended,
Toff
i , and the times at which it was reinstated, Ton

i , were iterated
on a mesh of 500 evenly spaced points across a timespan of 0–
400. Once one optimum release pair was found, the process was
repeated up to two further times to identify subsequent optimum
releases as necessary. Unless otherwise stated, the base values
used were Ithresh = 4 × 106, c = 0.05, β = 1.5, µ = 1

80×365 ,
σ = 0.1961, α = 0.00657, and γ = 0.2222, which are again the
same values listed in Table 1. A lower base value of β was used as
it was considered unlikely that the population would be released
from quarantine without certain social-distancing policies being
implemented. The optimum solution was found for a range of
different values of β , c, and Ithresh. These solutions are presented
in Figure 5.

From Figure 5 we see that, in all scenarios, it is never optimal
to leave the entire population out of quarantine for long. Notably,
we see in every instance that the optimum solution results in
quarantine only being lifted for periods of 1–2 weeks. This
presents a very narrow window of time to be able to monitor
the rise in infections. There was no distinguishable change in
dynamic behavior between the different parameters sampled.
We see in Figure 5B that increasing the transmission of the
disease required the initial quarantine to be ended later, and for
subsequent quarantines to be enforced for a longer duration.
All optimum solutions do however result in rapidly increasing
herd immunity by moving a large number of individuals to
the recovered class. This difference can be seen by noting the
difference in timescale on the horizontal axes of Figures 4, 5.

Just as with the gradual release strategy, total sensitivity
indices were calculated via the same method for our
optimum on-off strategy. In descending order, and

for the on-off strategy, these now become: γ : 0.6371,
Ithresh : 0.3775,β : 0.2973, σ : 0.2821, c : 0.0478,α : 0.0045. We see
that the order of sensitivity is roughly the same as for the gradual
release strategy, however all values (except for β) show increased
sensitivity on the optimal result. The impact of the incubation
period is the most substantially different, and this is due to the
shorter durations of time people are out of quarantine in the
optimum solution, meaning small changes to the incubation
period may have large unexpected impacts on the surge in
infected individuals.

4. DISCUSSION

Here, we have investigated the optimal release of individuals
from a state of lockdown. The primary conclusion of our work
is that a gradual release strategy is preferable to an on-off release
strategy. We conclude this from the finding that a population-
wide instantaneous release would cause the number of infected
individuals to rise dramatically, in a short period of time.
Any decision to begin easing lockdown measures will require
constant monitoring and a high-level of population testing to
track the likely rise toward a second-peak of infections. We show
that employing a gradual release strategy, where groups of the
population are slowly released from quarantine sequentially, will
slow the arrival of any subsequent infection peaks compared to
an on-off strategy, where lockdown is ended for all individuals
imminently and reinstated when subsequent infections begin to
increase. In all considered instances (i.e., parameter variations), it
will not be possible to end lockdown for the entire population for
any longer than 2 weeks, as the number of infected individuals is
then expected to quickly overwhelm the health service following
such a release. By ensuring that the increase in the number of
infected individuals is as slow as possible, this will enable health
officials to monitor more accurately the evolving situation, and
provide more time to respond to unexpected increases in the
number of infected individuals. We note that our approach does
not consider the ethical responsibilities that will also impact
any policy decision. If enough hospital provision was available,
many more people can return to employment, but we recognize
this will result in increased risk of further mortalities. As many
governments state however, a functioning economy is more able
to provide health provision to those with life-threatening illnesses
unrelated to COVID-19.

For a gradual release strategy, our simulations broadly suggest
that a large section of the population should be released from
lockdown initially, after the first peak of infections has fully
passed. The rest of the population may then be released 3–4
months later following a likely second peak in infections. Again,
in a general context, it is optimal to wait for 1–2 weeks after the
end of an infection peak before releasing any of the population
from lockdown. While it is desirable to return the population to
work as early as possible, our optimal calculation states that this
1–2 weeks “wait” period is crucial in ensuring that the number
of infected individuals is as low as possible when ending any
lockdownmeasures, to reduce the growth of new cases. After this
sufficient, cautious, wait period has ended, people should then be
released from quarantine, with the knowledge that asmany as 1 in
100 of them (under the worst-case scenario) may require critical
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FIGURE 5 | Optimum on-off release strategies for a range of different values of Ithresh (infection threshold), β (transmission rate) and c (lockdown effectiveness), as

marked. Plots (A–C) show the total quarantined population, displaying when releases and re-entry to quarantine are made. Plots (D–F) depict the associated total

infected population (I+ IQ) associated with each optimum release strategy.

care (10) in the coming months. It is expected that a second peak
in infections may be observed 1–2 months after this release date,
and that the remaining population in quarantine should remain
so until, once again, several weeks of low newly infected cases
daily have been observed.

What we have not undertaken here is to investigate or
advocate any particular forms of changed behaviors that might
be needed by those released, although understanding them can
allow parameters (such as transmission rates) to be adjusted
in our framework. Additional measures proposed include:
reopening local connections before connecting cities further
apart (26), differential release times based on age (27–29), on-
going social distancing (9, 30, 31), contact tracing using mobile
applications (32) and behavior monitoring (33), case-finding
(34), and cyclic schedules (e.g., short working weeks) (35, 36).

Placing our analysis in the context of other studies, Mulheirn
et al. (34) provide a particularly broad and qualitative assessment
of ranges of possible exit strategies from lockdown. These
include release times potentially dependent on age, sector,
or geographical region, and the latter including metrics of
local health capacity. Such measures can be in tandem with
strong policies to shield the most vulnerable. The authors note
that with varied approaches to lockdown release by differing
countries, there is an opportunity to learn from this by
intercomparison. Undoubtedly, all countries leaving lockdown,
however implemented, will heavily scrutinize data for any
evidence of an emerging “second wave” of infections. Noted is
the potential for raised levels of testing, in tandem with contact
tracing for anyone found to be infected, to slow the spread of

COVID-19 while at least a partial restarting of society occurs. For
all of the options considered by Mulheirn et al. (34), if the related
parameters can be estimated with at least some certainty, then
we believe our flexible model structure can adopt these. Hence
our simulation framework provides a mechanism to place any
suggested lockdown plans on a quantitative basis. Furthermore,
where flexibility exists in release times, then for a given strategy,
calculation of an optimal solution is possible.

The nearest analysis to ours found in the literature, based
on both a SEIR framework and applied to COVID-19, is by
German et al. (28). Their version of the SEIR equations place
more complexity into the infection component, differentiating
between alternative levels of seriousness with which a person
has the illness, i.e., from asymptomatic through to requiring
intensive care. They also allow for uncertainty as to whether
people who recover are immune—an issue likely to be resolved
once antibody tests become routinely available. Hence, people
post-infection can, in the model, be returned to the susceptible
pool. German et al. (28) conclude that without retaining some
constraints on the population after the termination of lockdown,
then there would be an overwhelming increase in infections.
Such constraints include social distancing, isolation of infectious
people and contact tracing. They further stress the importance of
a considerable increase in the testing of individuals to best inform
any release decisions. Their conclusions align with many of our
findings, however, rather than assessing constraints applied to the
entire population as released simultaneously, our primary focus
is to consider additional flexibility to constrain infection levels by
a gradual release from lockdown.
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Whilst we believe that our model framework does have
predictive capability, we do raise a couple of caveats. We
recommend exploring our findings within a variety of other
model frameworks. Stochastic frameworks may be better suited
to model the exact time periods when populations are first
reintroduced, so as to better calculate the range of time
frames until a second wave of infections in a probabilistic
setting. Likewise compartmental infection models, such as those
presented by Giordano et al. (9) will be able to provide more
accurate estimations on any expected hospital intake. Our
model is broad enough to allow it to be applied to countries
outside of the UK, simply by initializing at the alternate initial
conditions and setting some parameters that will be country-
specific. This, however, must be supported by an agreed uniform
definition of our basic model parameters, and case confirmation
definition, to ensure that model validation is compatible with the
respective country.

In preparing to monitor the situation upon easing lockdown
measures, our sensitivity analysis highlights that the recovery
rate of the disease, γ above, is the most critical parameter
in understanding the magnitude of any subsequent peaks in
infection. Our calculations can be trusted further if that value
is well-understood. For example, if new hospitalized patients
of COVID-19 appeared to be remaining symptomatic and
infectious for longer than previously estimated, it is plausible
to assume within the general community that the disease is
therefore being transmitted faster than previously expected. This
knowledge could trigger preparations for a potential need to
reinstate lockdown measures. Hence further research efforts
into the infectious period should also therefore be prioritized.
In a similar vein, the parameter to which results are second-
most sensitive is transmission rate, β , and so also worthy of
precise research.

A potential benefit of the on-off release strategy is that it
greatly increases the number of people subsequently moved to
the recovered class, rapidly bolstering the acquisition of herd-
immunity. This in theory would enable the full re-opening of
the economy at an earlier date, however it makes the critical
assumption that recovered individuals would remain immune to
the disease. The nature of immunity to SARS-CoV-2 is an open
question and efforts are being made to understand its strength
and longevity, but currently the WHO advises that there is no
evidence yet to suggest that recovered COVID-19 patients have
ongoing immunity to a second infection (37). In light of this,
the more cautious gradual release strategy remains even more
preferable as the scientific community continues its efforts to
develop a viable vaccine.

In conclusion, using an optimal control methodology, we
have shown that a gradual staggered release of individuals out
of lockdown is recommended to ensure that health systems
are not overwhelmed by a surge in infected individuals. It has
been well-observed that older individuals are more likely to
require critical care as a result of COVID-19 (10). Although our
analysis does not as yet differentiate by age who should be in
any partial lockdown releases, this does indicate that, potentially,
the younger population could be the first to be released from

lockdown. This would further ease any subsequent strain on the
health system, and potentially further bolster a herd-immunity
effect. We stress, however, that any decision to gradually release
a proportion of the population by demographic criteria must
be supported by periodical biomolecular investigation into
the infectivity of such a group, as any sector released from
quarantine will immediately be at increased risk, and may infect
others. Ongoing population testing following a release from
lockdown will be critical in ascertaining whether the infected
population is growing in accordance with model projections.
If large differences are observed early, re-initializations of the
model should be performed. Similarly, our analysis does not
model the capability of businesses and individuals who have the
infrastructure and availability to continue to work remotely.

The ongoing threat of COVID-19 will require continual
monitoring and study in the coming months. It is important
to ensure that infections are kept to a minimum, and that
the government and relevant services are given enough time
to prepare for increases in infections. The findings of this
study stress that gradual and cautious action must be taken
when easing lockdown measures, to save resources, and lives,
while adding to the evidence base of possible routes out
of lockdown.
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