763 research outputs found

    Motor imagery, forward models and the cerebellum:a commentary on Rieger et al., 2023

    Get PDF
    In this commentary on Rieger et al., Psychological Research Psychologische Forschung, 2023, I discuss possible ways to test the hypothesis that action imagery is achieved by simulations of actions through an internal forward model. These include brain imaging, perturbation through TMS, and psychophysical tests of adaptation of intended reach actions.</p

    Limits to tDCS effects in language:failures to modulate word production in healthy participants with frontal or temporal tDCS

    Get PDF
    Transcranial direct current stimulation (tDCS) is a method of non-invasive brain stimulation widely used to modulate cognitive functions. Recent studies, however, suggests that effects are unreliable, small and often non-significant at least when stimulation is applied in a single session to healthy individuals. We examined the effects of frontal and temporal lobe anodal tDCS on naming and reading tasks and considered possible interactions with linguistic activation and selection mechanisms as well possible interactions with item difficulty and participant individual variability. Across four separate experiments (N, Exp 1A = 18; 1B = 20; 1C = 18; 2 = 17), we failed to find any difference between real and sham stimulation. Moreover, we found no evidence of significant effects limited to particular conditions (i.e., those requiring suppression of semantic interference), to a subset of participants or to longer RTs. Our findings sound a cautionary note on using tDCS as a means to modulate cognitive performance. Consistent effects of tDCS may be difficult to demonstrate in healthy participants in reading and naming tasks, and be limited to cases of pathological neurophysiology and/or to the use of learning paradigms

    Identifying the causal mechanisms of the quiet eye

    Get PDF
    Scientists who have examined the gaze strategies employed by athletes have determined that longer quiet eye (QE) durations (QED) are characteristic of skilled compared to less-skilled performers. However, the cognitive mechanisms of the QE and, specifically, how the QED affects performance are not yet fully understood. We review research that has examined the functional mechanism underlying QE and discuss the neural networks that may be involved. We also highlight the limitations surrounding QE measurement and its definition and propose future research directions to address these shortcomings. Investigations into the behavioural and neural mechanisms of QE will aid the understanding of the perceptual and cognitive processes underlying expert performance and the factors that change as expertise develops

    The Development of the Head of the Imago of Chironomus

    Get PDF
    n/

    Graph network analysis of immediate motor-learning induced changes in resting state BOLD

    Get PDF
    Recent studies have demonstrated that following learning tasks, changes in the resting state activity of the brain shape regional connections in functionally specific circuits. Here we expand on these findings by comparing changes induced in the resting state immediately following four motor tasks. Two groups of participants performed a visuo-motor joystick task with one group adapting to a transformed relationship between joystick and cursor. Two other groups were trained in either explicit or implicit procedural sequence learning. Resting state BOLD data were collected immediately before and after the tasks. We then used graph theory-based approaches that include statistical measures of functional integration and segregation to characterise changes in biologically plausible brain connectivity networks within each group. Our results demonstrate that motor learning reorganizes resting brain networks with an increase in local information transfer, as indicated by local efficiency measures that affect the brain's small world network architecture. This was particularly apparent when comparing two distinct forms of explicit motor learning: procedural learning and the joystick learning task. Both groups showed notable increases in local efficiency. However changes in local efficiency in the inferior frontal and cerebellar regions also distinguishes between the two learning tasks. Additional graph analytic measures on the &quot;non-learning&quot; visuo-motor performance task revealed reversed topological patterns in comparison with the three learning tasks. These findings underscore the utility of graph-based network analysis as a novel means to compare both regional and global changes in functional brain connectivity in the resting state following motor learning tasks

    The role of the posterior cerebellum in saccadic adaptation:a transcranial direct current stimulation study

    Get PDF
    The posterior vermis of the cerebellum is considered to be critically involved in saccadic adaptation. However, recent evidence suggests that the adaptive decrease (backward adaptation) and the adaptive increase (forward adaptation) of saccade amplitude rely on partially separate neural substrates. We investigated whether the posterior cerebellum could be differentially involved in backward and forward adaptation by using transcranial direct current stimulation (TDCS). To do so, participants' saccades were adapted backward or forward while they received anodal, cathodal, or sham TDCS. In two extra groups, subjects underwent a nonadaptation session while receiving anodal or cathodal TDCS to control for the direct effects of TDCS on saccadic execution. Surprisingly, cathodal stimulation tended to increase the extent of both forward and backward adaptations, while anodal TDCS strongly impaired forward adaptation and, to a smaller extent, backward adaptation. Forward adaptation was accompanied by a greater increase in velocity with cathodal stimulation, and reduced duration of change for anodal stimulation. In contrast, the expected velocity decrease in backward adaptation was noticeably weaker with anodal stimulation. Stimulation applied during nonadaptation sessions did not affect saccadic gain, velocity, or duration, demonstrating that the reported effects are not due to direct effects of the stimulation on the generation of eye movements. Our results demonstrate that cerebellar excitability is critical for saccadic adaptation. Based on our results and the growing evidence from studies of vestibulo-ocular reflex and saccadic adaptation, we conclude that the plasticity at the level of the oculomotor vermis is more fundamentally important for forward adaptation than for backward adaptation

    Task-specific facilitation of cognition by anodal transcranial direct current stimulation of the prefrontal cortex

    Get PDF
    We previously speculated that depression of cerebellar excitability using cathodal transcranial direct current stimulation (tDCS) might release extra cognitive resources via the disinhibition of activity in prefrontal cortex. The objective of the present study was to investigate whether anodal tDCS over the prefrontal cortex could similarly improve performance when cognitive demands are high. Sixty-three right-handed participants in 3 separate groups performed the Paced Auditory Serial Addition Task (PASAT) and the more difficult Paced Auditory Serial Subtraction Task (PASST), before and after 20 min of anodal, cathodal, or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC). Performance was assessed in terms of the accuracy, latency, and variability of correct verbal responses. All behavioral measures significantly improved for the PASST after anodal DLPFC stimulation, but not the PASAT. There were smaller practice effects after cathodal and sham stimulation. Subjective ratings of attention and mental fatigue were unchanged by tDCS over time. We conclude that anodal stimulation over the left DLPFC can selectively improve performance on a difficult cognitive task involving arithmetic processing, verbal working memory, and attention. This result might be achieved by focally improving executive functions and/or cognitive capacity when tasks are difficult, rather than by improving levels of arousal/alertness

    Control of wrist movement in deafferented man: evidence for a mixed strategy of position and amplitude control

    Get PDF
    © 2017 The Author(s) There is a continuing debate about control of voluntary movement, with conflicted evidence about the balance between control of movement vectors (amplitude control) that implies knowledge of the starting position for accuracy, and equilibrium point or final position control, that is independent of the starting conditions. We tested wrist flexion and extension movements in a man with a chronic peripheral neuronopathy that deprived him of proprioceptive knowledge of his wrist angles. In a series of experiments, we demonstrate that he could scale the amplitude of his wrist movements in flexion/extension, even without visual feedback, and appeared to adopt a strategy of moving via a central wrist position when asked to reach target angles from unknown start locations. When examining the relationship between positional error at the start and end of each movement in long sequences of movements, we report that he appears to have three canonical positions that he can reach relatively successfully, in flexion, in extension and in the centre. These are consistent with end-point or position control. Other positions were reached with errors that suggest amplitude control. Recording wrist flexor and extensor EMG confirmed that the flexion and extension canonical positions were reached by strong flexor and extensor activity, without antagonist activity, and other positions were reached with graded muscle activation levels. The central canonical position does not appear to be reached by either maximal co-contraction or by complete relaxation, but may have been reached by matched low-level co-contraction

    Concurrent adaptation to opposing visual displacements during an alternating movement.

    Get PDF
    It has been suggested that, during tasks in which subjects are exposed to a visual rotation of cursor feedback, alternating bimanual adaptation to opposing rotations is as rapid as unimanual adaptation to a single rotation (Bock et al. in Exp Brain Res 162:513–519, 2005). However, that experiment did not test strict alternation of the limbs but short alternate blocks of trials. We have therefore tested adaptation under alternate left/right hand movement with opposing rotations. It was clear that the left and right hand, within the alternating conditions, learnt to adapt to the opposing displacements at a similar rate suggesting that two adaptive states were formed concurrently. We suggest that the separate limbs are used as contextual cues to switch between the relevant adaptive states. However, we found that during online correction the alternating conditions had a significantly slower rate of adaptation in comparison to the unimanual conditions. Control conditions indicate that the results are not directly due the alternation between limbs or to the constant switching of vision between the two eyes. The negative interference may originate from the requirement to dissociate the visual information of these two alternating displacements to allow online control of the two arms
    corecore