6 research outputs found

    Effect of Treated Wastewater from Anaerobic Digester Coupled with Anaerobic Baffled Reactor as Fertigation on Soil Nutrient Residues, Growth and Yield of Maize Plants

    Get PDF
    Water scarcity, wastewater management and growing food demand associated with global population increase, are among the drivers cited for water reuse in agriculture. The current study intends to contribute on the influence of treated wastewater from the anaerobic digester coupled with anaerobic baffled reactor (ABR) as a fertigation on soil nutrient residues, growth and yield attributes of maize plants by using surface drip irrigation system to apply the treated wastewater. The experiment consisted of experimental plots irrigated with treated wastewater and control plots irrigated with tap water; all with three replications. The treated wastewater was lightly alkaline with pH of 7.8±0.2 and high concentration of nutrients than tap water, but were within the acceptable levels. Fertigation with treated wastewater improved soil fertility evidenced by significant improvement (P≤0.05) in plant height, leaf area Index (LAI) and maize yield. Plant height was 1.5 times taller and LAI was about 2.5 times more in treatment than in control plots. Yield attributes in experimental plots including number of grains per cob, (97±11.3); weight of grains per cob, (80.7±7.9 g); mass of 100 grains, (35.0±3.5 g), and grain yield, (745.8±62.9 Kg/ha) were significantly higher (P≤0.05) compared to their counterpart control plots. The grain yield in experimental plots was about 37% higher than the yield in control plots. Therefore, fertigation with treated wastewater from the anaerobic digester coupled with ABR improves maize yield and is advisable in areas with water scarcity

    Final report / Groundwater Pollution, Majumbasita, Tanzania

    No full text

    MinION nanopore sequencing accelerates progress towards ubiquitous genetics in water research

    No full text
    In 2014, Oxford Nanopore Technologies (ONT) introduced an affordable and portable sequencer called MinION. We reviewed emerging applications in water research and assessed progress made with this platform towards ubiquitous genetics. With >99% savings in upfront costs as compared to conventional platforms, the MinION put sequencing capacity into the hands of many researchers and enabled novel applications with diverse remits, including in countries without universal access to safe water and sanitation. However, to realize the MinION’s fabled portability, all the auxiliary equipment items for biomass concentration, genetic material extraction, cleanup, quantification, and sequencing library preparation also need to be lightweight and affordable. Only a few studies demonstrated fully portable workflows by using the MinION onboard a diving vessel, an oceanographic research ship, and at sewage treatment works. Lower nanopore sequencing read accuracy as compared to alternative platforms currently hinders MinION applications beyond research, and inclusion of positive and negative controls should become standard practice. ONT’s EPI2ME platform is a major step towards user-friendly bioinformatics. However, no consensus has yet emerged regarding the most appropriate bioinformatic pipeline, which hinders intercomparison of study results. Processing, storing, and interpreting large data sets remains a major challenge for ubiquitous genetics and democratizing sequencing applications

    Limnological variability and pelagic fish abundance (Stolothrissa tanganicae and Lates stappersii) in Lake Tanganyika

    Full text link
    The abundance of two main pelagic fish species in Lake Tanganyika (Stolothrissa tanganicae and Lates stappersii) has always been observed to fluctuate considerably at different time scales. The inverse correlation between the abundance of these species has often been interpreted as the consequence of predator-prey relations (avoidance behaviour by the prey). However, currently the two species often appear spatially segregated in the lake, S. tanganicae dominating in the north while L. stappersii is generally abundant in the south where it feeds mostly on shrimps. A fluctuating abundance of the species is nevertheless observed. As these fish species have a major importance for the fisheries, we investigated the limnological variability in relation to the short-term variability of fish catches. The abundance of S. tanganicae was positively correlated to plankton biomass (r = 0.65), while water transparency (r = 0.56), depth of mixed layer (r = -0.70) and oxygenated water appeared important drivers for the abundance of L. stappersii. Alternating "mixing" and "stable" states of the epilimnion related to seasonal and internal waves variability are probably determinant for the short-term variability in abundance of S. tanganicae and L. stappersii. In the framework of this study, remote sensing has shown a potentially interesting application for fisheries research at Lake Tanganyika. We observed a close correspondence between phytoplankton blooms at the time of trade winds changes and increased catches of S. tanganicae in the south. The anti-correlated abundance of S. tanganicae and L. stappersii probably mainly reflects the underlying fluctuating limnological environment. Fisheries studies need to integrate limnological and planktonic monitoring to better understand large and complex ecosystems such as Lake Tanganyika

    First genomic study on Lake Tanganyika sprat Stolothrissa tanganicae : a lack of population structure calls for integrated management of this important fisheries target species

    Get PDF
    BackgroundClupeid fisheries in Lake Tanganyika (East Africa) provide food for millions of people in one of the world's poorest regions. Due to climate change and overfishing, the clupeid stocks of Lake Tanganyika are declining. We investigate the population structure of the Lake Tanganyika sprat Stolothrissa tanganicae, using for the first time a genomic approach on this species. This is an important step towards knowing if the species should be managed separately or as a single stock. Population structure is important for fisheries management, yet understudied for many African freshwater species. We hypothesize that distinct stocks of S. tanganicae could be present due to the large size of the lake (isolation by distance), limnological variation (adaptive evolution), or past separation of the lake (historical subdivision). On the other hand, high mobility of the species and lack of obvious migration barriers might have resulted in a homogenous population.ResultsWe performed a population genetic study on wild-caught S. tanganicae through a combination of mitochondrial genotyping (96 individuals) and RAD sequencing (83 individuals). Samples were collected at five locations along a north-south axis of Lake Tanganyika. The mtDNA data had low global FST and, visualised in a haplotype network, did not show phylogeographic structure. RAD sequencing yielded a panel of 3504 SNPs, with low genetic differentiation (F-ST=0.0054; 95% CI: 0.0046-0.0066). PCoA, fineRADstructure and global F-ST suggest a near-panmictic population. Two distinct groups are apparent in these analyses (F-ST=0.1338 95% CI: 0.1239,0.1445), which do not correspond to sampling locations. Autocorrelation analysis showed a slight increase in genetic difference with increasing distance. No outlier loci were detected in the RADseq data.ConclusionOur results show at most very weak geographical structuring of the stock and do not provide evidence for genetic adaptation to historical or environmental differences over a north-south axis. Based on these results, we advise to manage the stock as one population, integrating one management strategy over the four riparian countries. These results are a first comprehensive study on the population structure of these important fisheries target species, and can guide fisheries management.Peer reviewe
    corecore