29 research outputs found

    Kardos Tibor: A magyarországi humanizmus kora

    Get PDF

    Prognosis in human glioblastoma based on expression of ligand growth hormone-releasing hormone, pituitary-type growth hormone-releasing hormone receptor, its splicing variant receptors, EGF receptor and PTEN genes

    Get PDF
    Purpose G lioblastoma (GB) is the most frequent brain tumor. Despite recent improvement in therapeutic strategies, the prognosis of GB remains poor. Growth hormone-releasing hormone (GHRH) may act as a growth factor; antagonists of GHRH have been successfully applied for experimental treatment of different types of tumors. The expression profile of GHRH receptor, its main splice variant SV1 and GHRH have not been investigated in human GB tissue samples. Methods We examined the expression of GHRH, fulllength pituitary-type GHRH receptor (pGHRHR), its functional splice variant SV1 and non-functional SV2 by RTPCR in 23 human GB specimens. Epidermal growth factor receptor (EGFR) and phosphatase and tensin homolog gene (PTEN) expression levels were also evaluated by quantitative RT-PCR. Correlations between clinico-pathological parameters and gene expressions were analyzed. Results E xpression of GHRH was found to be positive in 61.9 % of samples. pGHRH receptor was not expressed in our sample set, while SV1 could be detected in 17.4 % and SV2 in 8.6 % of the GB tissues. In 65.2 and 78.3 % of samples, significant EGFR over-expression or PTEN under-representation could be detected, respectively. In 47.8 % of cases, EGFR up-regulation and PTEN down-regulation occurred together. Survival was significantly poorer in tumors lacking GHRH expression. This worse prognosis in GHRH negative group remained significant even if SV1 was also expressed. Conclusion Our study shows that GHRH and SV1 genes expressed in human GB samples and their expression patterns are associated with poorer prognosis

    Human keratinocytes are vanilloid resistant

    Get PDF
    BACKGROUND: Use of capsaicin or resiniferatoxin (RTX) as analgesics is an attractive therapeutic option. RTX opens the cation channel inflammatory pain/vanilloid receptor type 1 (TRPV1) permanently and selectively removes nociceptive neurons by Ca(2+)-cytotoxicity. Paradoxically, not only nociceptors, but non-neuronal cells, including keratinocytes express full length TRPV1 mRNA, while patient dogs and experimental animals that underwent topical treatment or anatomically targeted molecular surgery have shown neither obvious behavioral, nor pathological side effects. METHODS: To address this paradox, we assessed the vanilloid sensitivity of the HaCaT human keratinocyte cell line and primary keratinocytes from skin biopsies. RESULTS: Although both cell types express TRPV1 mRNA, neither responded to vanilloids with Ca(2+)-cytotoxicity. Only ectopic overproduction of TRPV1 rendered HaCaT cells sensitive to low doses (1-50 nM) of vanilloids. The TRPV1-mediated and non-receptor specific Ca(2+)-cytotoxicity ([RTX]>15 microM) could clearly be distinguished, thus keratinocytes were indeed resistant to vanilloid-induced, TRPV1-mediated Ca(2+)-entry. Having a wider therapeutic window than capsaicin, RTX was effective in subnanomolar range, but even micromolar concentrations could not kill human keratinocytes. Keratinocytes showed orders of magnitudes lower TRPV1 mRNA level than sensory ganglions, the bona fide therapeutic targets in human pain management. In addition to TRPV1, TRPV1b, a dominant negative splice variant was also noted in keratinocytes. CONCLUSION: TRPV1B expression, together with low TRPV1 expression, may explain the vanilloid paradox: even genuinely TRPV1 mRNA positive cells can be spared with therapeutic (up to micromolar) doses of RTX. This additional safety information might be useful for planning future human clinical trials
    corecore