169 research outputs found

    Nanodust detection near 1 AU from spectral analysis of Cassini/RPWS radio data

    Full text link
    Nanodust grains of a few nanometer in size are produced near the Sun by collisional break-up of larger grains and picked-up by the magnetized solar wind. They have so far been detected at 1 AU by only the two STEREO spacecraft. Here we analyze the spectra measured by the radio and plasma wave instrument onboard Cassini during the cruise phase close to Earth orbit; they exhibit bursty signatures similar to those observed by the same instrument in association to nanodust stream impacts on Cassini near Jupiter. The observed wave level and spectral shape reveal impacts of nanoparticles at about 300 km/s, with an average flux compatible with that observed by the radio and plasma wave instrument onboard STEREO and with the interplanetary flux models

    The Solar Wind Energy Flux

    Full text link
    The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW < 700 km/s), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.Comment: 12 pages, 5 figure

    Radio pulses from cosmic ray air showers - Boosted Coulomb and Cherenkov fields

    Full text link
    High-energy cosmic rays passing through the Earth's atmosphere produce extensive showers whose charges emit radio frequency pulses. Despite the low density of the Earth's atmosphere, this emission should be affected by the air refractive index because the bulk of the shower particles move roughly at the speed of radio waves, so that the retarded altitude of emission, the relativistic boost and the emission pattern are modified. We consider in this paper the contribution of the boosted Coulomb and the Cherenkov fields and calculate analytically the spectrum using a very simplified model in order to highlight the main properties. We find that typically the lower half of the shower charge energy distribution produces a boosted Coulomb field, of amplitude comparable to the levels measured and to those calculated previously for synchrotron emission. Higher energy particles produce instead a Cherenkov-like field, whose amplitude may be smaller because both the negative charge excess and the separation between charges of opposite signs are small at these energies.Comment: 10 figures - Accepted by Astronomy & Astrophysic

    Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind?

    Get PDF
    The STEREO/WAVES instrument has detected a very large number of intense voltage pulses. We suggest that these events are produced by impact ionisation of nanoparticles striking the spacecraft at a velocity of the order of magnitude of the solar wind speed. Nanoparticles, which are half-way between micron-sized dust and atomic ions, have such a large charge-to-mass ratio that the electric field induced by the solar wind magnetic field accelerates them very efficiently. Since the voltage produced by dust impacts increases very fast with speed, such nanoparticles produce signals as high as do much larger grains of smaller speeds. The flux of 10-nm radius grains inferred in this way is compatible with the interplanetary dust flux model. The present results may represent the first detection of fast nanoparticles in interplanetary space near Earth orbit.Comment: In press in Solar Physics, 13 pages, 5 figure

    Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind

    Get PDF
    The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P

    Acceleration of weakly collisional solar-type winds

    Full text link
    One of the basic properties of the solar wind, that is the high speed of the fast wind, is still not satisfactorily explained. This is mainly due to the theoretical difficulty of treating weakly collisional plasmas. The fluid approach implies that the medium is collision dominated and that the particle velocity distributions are close to Maxwellians. However the electron velocity distributions observed in the solar wind depart significantly from Maxwellians. Recent kinetic collisionless models (called exospheric) using velocity distributions with a suprathermal tail have been able to reproduce the high speeds of the fast solar wind. In this letter we present new developments of these models by generalizing them over a large range of corona conditions. We also present new results obtained by numerical simulations that include collisions. Both approaches calculate the heat flux self-consistently without any assumption on the energy transport. We show that both approaches - the exospheric and the collisional one - yield a similar variation of the wind speed with the basic parameters of the problem; both produce a fast wind speed if the coronal electron distribution has a suprathermal tail. This suggests that exospheric models contain the necessary ingredients for the powering of a transonic stellar wind, including the fast solar one.Comment: Accepted for publication in The Astrophysical Journal Letters (accepted: 13 May 2005

    Nano dust impacts on spacecraft and boom antenna charging

    Full text link
    High rate sampling detectors measuring the potential difference between the main body and boom antennas of interplanetary spacecraft have been shown to be efficient means to measure the voltage pulses induced by nano dust impacts on the spacecraft body itself (see Meyer-Vernet et al, Solar Phys. 256, 463 (2009)). However, rough estimates of the free charge liberated in post impact expanding plasma cloud indicate that the cloud's own internal electrostatic field is too weak to account for measured pulses as the ones from the TDS instrument on the STEREO spacecraft frequently exceeding 0.1 V/m. In this paper we argue that the detected pulses are not a direct measure of the potential structure of the plasma cloud, but are rather the consequence of a transitional interruption of the photoelectron return current towards the portion of the antenna located within the expanding cloud

    Secondary electron emissions and dust charging currents in the nonequilibrium dusty plasma with power-law distributions

    Full text link
    We study the secondary electron emissions induced by the impact of electrons on dust grains and the resulting dust charging processes in the nonequilibrium dusty plasma with power-law distributions. We derive new expressions of the secondary emitted electron flux and the dust charging currents that are generalized by the power-law q-distributions, where the nonlinear core functions are numerically studied for the nonextensive parameter q. Our numerical analyses show that the power-law q-distribution of the primary electrons has a significant effect on the secondary emitted electron flux as well as the dust charging currents, and this effect depends strongly on the ratio of the electrostatic potential energy of the primary electrons at the dust grain's surface to the thermodynamic energy, implying that a competition in the dusty plasma between these two energies plays a crucial role in this novel effect.Comment: 16 pages, 6 figures, 32 reference

    Heating of the solar wind with electron and proton effects

    Get PDF
    We examine the effects of including effects of both protons and electrons on the heating of the fast solar wind through two different approaches. In the first approach, we incorporate the electron temperature in an MHD turbulence transport model for the solar wind. In the second approach, we adopt more empirically based methods by analyzing the measured proton and electron temperatures to calculate the heat deposition rates. Overall, we conclude that incorporating separate proton and electron temperatures and heat conduction effects provides an improved and more complete model of the heating of the solar wind

    On the unconstrained expansion of a spherical plasma cloud turning collisionless : case of a cloud generated by a nanometer dust grain impact on an uncharged target in space

    Get PDF
    Nano and micro meter sized dust particles travelling through the heliosphere at several hundreds of km/s have been repeatedly detected by interplanetary spacecraft. When such fast moving dust particles hit a solid target in space, an expanding plasma cloud is formed through the vaporisation and ionisation of the dust particles itself and part of the target material at and near the impact point. Immediately after the impact the small and dense cloud is dominated by collisions and the expansion can be described by fluid equations. However, once the cloud has reached micro-m dimensions, the plasma may turn collisionless and a kinetic description is required to describe the subsequent expansion. In this paper we explore the late and possibly collisionless spherically symmetric unconstrained expansion of a single ionized ion-electron plasma using N-body simulations. Given the strong uncertainties concerning the early hydrodynamic expansion, we assume that at the time of the transition to the collisionless regime the cloud density and temperature are spatially uniform. We do also neglect the role of the ambient plasma. This is a reasonable assumption as long as the cloud density is substantially higher than the ambient plasma density. In the case of clouds generated by fast interplanetary dust grains hitting a solid target some 10^7 electrons and ions are liberated and the in vacuum approximation is acceptable up to meter order cloud dimensions. ..
    corecore