55 research outputs found

    Protein and metal cluster structure of the wheat metallothionein domain γ-Ec-1: the second part of the puzzle

    Get PDF
    Metallothioneins (MTs) are small cysteine-rich proteins coordinating various transition metal ions, including ZnII, CdII, and CuI. MTs are ubiquitously present in all phyla, indicating a successful molecular concept for metal ion binding in all organisms. The plant MT Ec-1 from Triticum aestivum, common bread wheat, is a ZnII-binding protein that comprises two domains and binds up to six metal ions. The structure of the C-terminal four metal ion binding βEdomain was recently described. Here we present the structure of the N-terminal second domain, γ-Ec-1, determined by NMR spectroscopy. The γ-Ec-1 domain enfolds an M 2 II Cys6 cluster and was characterized as part of the full-length Zn6Ec-1 protein as well as in the form of the separately expressed domain, both in the ZnII-containing isoform and the CdII-containing isoform. Extended X-ray absorption fine structure analysis of Zn2γ-Ec-1 clearly shows the presence of a ZnS4 coordination sphere with average Zn-S distances of 2.33Å. 113CdNMR experiments were used to identify the MII-Cys connectivity pattern, and revealed two putative metal cluster conformations. In addition, the general metal ion coordination abilities of γ-Ec-1 were probed with CdII binding experiments as well as by pH titrations of the ZnII and CdII forms, the latter suggesting an interaction of the γdomain and the βEdomain within the full-length protei

    Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins

    Get PDF
    Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO4 2−) and tungstate (WO4 2−). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteri

    Characterization of the Zinc-binding Site of the Histidine-Proline-rich Glycoprotein Associated with Rabbit Skeletal Muscle AMP Deaminase

    Get PDF
    The AMP deaminase-associated variant of histidine-proline-rich glycoprotein (HPRG) is isolated from rabbit skeletal muscle by a modification of the protocol previously used for the purification of AMP deaminase. This procedure yields highly pure HPRG suitable for investigation by x-ray absorption spectroscopy of the zinc-binding behavior of the protein. X-ray absorption spectroscopy analysis of a 2:1 zinc-HPRG complex shows that zinc is bound to the protein, most probably in a dinuclear cluster where each Zn(2+) ion is coordinated, on average, by three histidine ligands and one heavier ligand, likely a sulfur from a cysteine. 11 cysteines of HPRG from different species are totally conserved, suggesting that five disulfide bridges are essential for the proper folding of the protein. At least another cysteine is present at different positions in the histidine-proline-rich domain of HPRG in all species, suggesting that this cysteine is the candidate for zinc ligation in the muscle variant of HPRG. The same conclusion is likely to be true for the six histidines used by the protein as zinc ligands. The presence in muscle HPRG of a specific zinc-binding site permits us to envisage the addition of HPRG into the family of metallochaperones. In this view, HPRG may enhance the in vivo stability of metalloenzymes such as AMP deaminase

    Emission of volatile halogenated compounds, speciation and localization of bromine and iodine in the brown algal genome model Ectocarpus siliculosus

    Get PDF
    This study explores key features of bromine and iodine metabolism in the filamentous brown alga and genomics model Ectocarpus siliculosus. Both elements are accumulated in Ectocarpus, albeit at much lower concentration factors (2-3 orders of magnitude for iodine, and < 1 order of magnitude for bromine) than e.g. in the kelp Laminaria digitata. Iodide competitively reduces the accumulation of bromide. Both iodide and bromide are accumulated in the cell wall (apoplast) of Ectocarpus, with minor amounts of bromine also detectable in the cytosol. Ectocarpus emits a range of volatile halogenated compounds, the most prominent of which by far is methyl iodide. Interestingly, biosynthesis of this compound cannot be accounted for by vanadium haloperoxidase since the latter have not been found to catalyze direct halogenation of an unactivated methyl group or hydrocarbon so a methyl halide transferase-type production mechanism is proposed

    Simulating the XANES of metalloenzymes – a case study

    No full text
    The analysis of XANES patterns is very indicative for screening samples. Powerful X-ray absorption spectroscopy data-analysis programs can simulate these patterns. Here, a case study on two structural motifs is presented: a non-heme Fe site (2-His-1-carboxylate motif) and the metallo [beta]-lactamase dinuclear Zn site. Simulations of the edge shapes for different structural models will be compared with experimental results, pointing out limitations and challenges. The influence of single neighbouring atoms in the first and second shell on the resulting XANES pattern is discussed. Insights into catalytic mechanisms and the requirements for future theory development are addressed

    Functional Analysis of the Copper-Dependent Quercetin 2,3-Dioxygenase. 2. X-ray Absorption Studies of Native Enzyme and Anaerobic Complexes with the Substrates Quercetin and Myricetin

    Get PDF
    Quercetin 2,3-dioxygenase (2,3QD) is a mononuclear copper-dependent dioxygenase which catalyzes the cleavage of the heterocyclic ring of the flavonol quercetin (5,7,3',4'-tetrahydroxy flavonol) to produce 2-protocatechuoyl-phloroglucinol carboxylic acid and carbon monoxide. In this study, X-ray absorption spectroscopy has been used to characterize the local structural environment of the Cu2+ center of Aspergillus japonicus 2,3QD. Analysis of the EXAFS region of native 2,3QD at functionally relevant pH (pH 6.0) indicates an active site equally well-described by either four or five ligands (3N(His) + 1-2O) at an average distance of 2.00 Å. Bond valence sum analysis confirms that the best model is somewhere between the two. When, however, 2,3QD is anaerobically complexed with its natural substrate quercetin, the copper environment undergoes a transition to a five-coordinated cage, which is also best modeled by a single shell of N/O scatterers at the average distance of 2.00 Å. This coordination is independently confirmed by the anaerobic complex with myricetin (5'-hydroxy quercetin). XANES analysis confirms that substrate binding does not reduce the Cu2+ ion. The present study gives the first direct insights into the coordination chemistry of the enzyme complexed with its substrates. It suggests that activation for O2 attack is achieved by monodentate substrate complexation to the copper ion through the 3-hydroxyl group. In addition, monodentate carboxylate ligation by the Glu73 side chain is likely to play a role in the fine-tuning of the equilibrium leading to the formation of the activated E·S complex.
    corecore