58,244 research outputs found
Two-temperature coronal flow above a thin disk
We extended the disk corona model (Meyer & Meyer-Hofmeister 1994; Meyer, Liu,
& Meyer-Hofmeister 2000a) to the inner region of galactic nuclei by including
different temperatures in ions and electrons as well as Compton cooling. We
found that the mass evaporation rate and hence the fraction of accretion energy
released in the corona depend strongly on the rate of incoming mass flow from
outer edge of the disk, a larger rate leading to more Compton cooling, less
efficient evaporation and a weaker corona. We also found a strong dependence on
the viscosity, higher viscosity leading to an enhanced mass flow in the corona
and therefore more evaporation of gas from the disk below. If we take accretion
rates in units of the Eddington rate our results become independent on the mass
of the central black hole. The model predicts weaker contributions to the hard
X-rays for objects with higher accretion rate like narrow-line Seyfert 1
galaxies (NLS1s), in agreement with observations. For luminous active galactic
nuclei (AGN) strong Compton cooling in the innermost corona is so efficient
that a large amount of additional heating is required to maintain the corona
above the thin disk.Comment: 17 pages, 6 figures. ApJ accepte
Evaluation of a hybrid hydrostatic bearing for cryogenic turbopump application
A hybrid hydrostatic bearing was designed to operate in liquid hydrogen at speeds to 80,000 rpm and radial loads to 440 n (100 lbf). The bearing assembly consisted of a pair of 20-mm angular-contact ball bearings encased in a journal, which was in turn supported by a fluid film of liquid hydrogen. The size and operating conditions of the bearing were selected to be compatible with the operating requirements of an advanced technology turbopump. Several test parameters were varied to characterize the bearing's steady-state operation. The rotation of the tester shaft was varied between 0 and 80,000 rpm. Bearing inlet fluid pressure was varied between 2.07 and 4.48 MPa (300 and 650 psia), while the fluid sump pressure was independently varied between 0.34 and 2.07 MPa (50 and 300 psia). The maximum radial load applied to the bearing was 440 N (110 lbf). Measured hybrid-hydrostatic-bearing stiffness was 1.5 times greater than predicted, while the fluid flow rate through the bearing was 35 to 65 percent less than predicted. Under two-phase fluid conditions, the stiffness was even greater and the flow rate was less. The optimal pressure ratio for the bearing should be between 0.2 and 0.55 depending on the balance desired between bearing efficiency and stiffness. Startup and shutdown cyclic tests were conducted to demonstrate the ability of the hybrid-hydrostatic-bearing assembly to survive at least a 300-firing-duty cycle. For a typical cycle, the shaft was accelerated to 50,000 rpm in 1.8 sec. The bearing operated for 337 start-stop cycles without failure
Site determination and thermally assisted tunneling in homogenous nucleation
A combined low-temperature scanning tunneling microscopy and density
functional theory study on the binding and diffusion of copper monomers,
dimers, and trimers adsorbed on Cu(111) is presented. Whereas atoms in trimers
are found in fcc sites only, monomers as well as atoms in dimers can occupy the
stable fcc as well as the metastable hcp site. In fact the dimer fcc-hcp
configuration was found to be only 1.3 meV less favorable with respect to the
fcc-fcc configuration. This enables a confined intra-cell dimer motion, which
at temperatures below 5 K is dominated by thermally assisted tunneling.Comment: 4 pages, 4 figure
Nanodust detection near 1 AU from spectral analysis of Cassini/RPWS radio data
Nanodust grains of a few nanometer in size are produced near the Sun by
collisional break-up of larger grains and picked-up by the magnetized solar
wind. They have so far been detected at 1 AU by only the two STEREO spacecraft.
Here we analyze the spectra measured by the radio and plasma wave instrument
onboard Cassini during the cruise phase close to Earth orbit; they exhibit
bursty signatures similar to those observed by the same instrument in
association to nanodust stream impacts on Cassini near Jupiter. The observed
wave level and spectral shape reveal impacts of nanoparticles at about 300
km/s, with an average flux compatible with that observed by the radio and
plasma wave instrument onboard STEREO and with the interplanetary flux models
Dynamical Linked Cluster Expansions: A Novel Expansion Scheme for Point-Link-Point-Interactions
Dynamical linked cluster expansions are linked cluster expansions with
hopping parameter terms endowed with their own dynamics. This amounts to a
generalization from 2-point to point-link-point interactions. We develop an
associated graph theory with a generalized notion of connectivity and describe
an algorithmic generation of the new multiple-line graphs. We indicate physical
applications to spin glasses, partially annealed neural networks and SU(N)
gauge Higgs systems. In particular the new expansion technique provides the
possibility of avoiding the replica-trick in spin glasses. We consider
variational estimates for the SU(2) Higgs model of the electroweak phase
transition. The results for the transition line, obtained by dynamical linked
cluster expansions, agree quite well with corresponding high precision Monte
Carlo results.Comment: 41 pages, latex2e, 10 postscript figure
Detecting Photon-Photon Interactions in a Superconducting Circuit
A local interaction between photons can be engineered by coupling a nonlinear
system to a transmission line. The required high impedance transmission line
can be conveniently formed from a chain of Josephson junctions. The
nonlinearity is generated by side-coupling this chain to a Cooper pair box. We
propose to probe the resulting photon-photon interactions via their effect on
the current-voltage characteristic of a voltage-biased Josephson junction
connected to the transmission line. Considering the Cooper pair box to be in
the weakly anharmonic regime, we find that the dc current through the probe
junction yields features around the voltages , where
is the plasma frequency of the superconducting circuit. The features
at are a direct signature of the photon-photon interaction in the
system.Comment: 10 pages, 7 figure
Radioactive Probes of the Supernova-Contaminated Solar Nebula: Evidence that the Sun was Born in a Cluster
We construct a simple model for radioisotopic enrichment of the protosolar
nebula by injection from a nearby supernova, based on the inverse square law
for ejecta dispersion. We find that the presolar radioisotopes abundances
(i.e., in solar masses) demand a nearby supernova: its distance can be no
larger than 66 times the size of the protosolar nebula, at a 90% confidence
level, assuming 1 solar mass of protosolar material. The relevant size of the
nebula depends on its state of evolution at the time of radioactivity
injection. In one scenario, a collection of low-mass stars, including our sun,
formed in a group or cluster with an intermediate- to high-mass star that ended
its life as a supernova while our sun was still a protostar, a starless core,
or perhaps a diffuse cloud. Using recent observations of protostars to estimate
the size of the protosolar nebula constrains the distance of the supernova at
0.02 to 1.6 pc. The supernova distance limit is consistent with the scales of
low-mass stars formation around one or more massive stars, but it is closer
than expected were the sun formed in an isolated, solitary state. Consequently,
if any presolar radioactivities originated via supernova injection, we must
conclude that our sun was a member of such a group or cluster that has since
dispersed, and thus that solar system formation should be understood in this
context. In addition, we show that the timescale from explosion to the creation
of small bodies was on the order of 1.8 Myr (formal 90% confidence range of 0
to 2.2 Myr), and thus the temporal choreography from supernova ejecta to
meteorites is important. Finally, we can not distinguish between progenitor
masses from 15 to 25 solar masses in the nucleosynthesis models; however, the
20 solar mass model is somewhat preferred.Comment: ApJ accepted, 19 pages, 3 figure
Effects of live-bait shrimp trawling on seagrass beds and fish bycatch in Tampa Bay, Florida
The use of live shrimp for bait in
recreational fishing has resulted in
a controversial fishery for shrimp in
Florida. In this fishery, night collections
are conducted over seagrass
beds with roller beam trawls to capture
live shrimp, primarily pink
shrimp, Penaeus duorarum. These
shrimp are culled from the catch on
sorting tables and placed in onboard
aerated âliveâ wells. Beds of
turtlegrass, Thalassia testudinum,
a species that has highest growth
rates and biomass during summer
and lowest during the winter (Fonseca
et al., 1996) are predominant
areas for live-bait shrimp trawling
(Tabb and Kenny, 1969).
Our study objectives were 1) to
determine effects of a roller beam
trawl on turtlegrass biomass and
morphometrics during intensive
(up to 18 trawls over a turtlegrass
bed), short-term (3-hour duration)
use and 2) to examine the mortality
of bycatch finfish following capture
by a trawl
- âŠ