54 research outputs found

    Extended anticoagulant treatment with full- or reduced-dose apixaban in patients with cancer-associated venous thromboembolism: rationale and design of the API-CAT study

    Get PDF
    Cancer-associated thrombosis (CT) is associated with a high risk of recurrent venous thromboembolic (VTE) events that require extended anticoagulation in patients with active cancer, putting them at risk of bleeding. The aim of the API-CAT study (NCT03692065) is to assess whether a reduced-dose regimen of apixaban (2.5mg twice daily [bid]) is noninferior to a full-dose regimen of apixaban (5mg bid) for the prevention of recurrent VTE in patients with active cancer who have completed >= 6 months of anticoagulant therapy for a documented index event of proximal deep-vein thrombosis and/or pulmonary embolism. API-CAT is an international, randomized, parallel-group, double-blind, noninferiority trial with blinded adjudication of outcome events. Consecutive patients are randomized to receive apixaban 2.5 or 5mg bid for 12 months. The primary efficacy outcome is a composite of recurrent symptomatic or incidental VTE during the treatment period. The principal safety endpoint is clinically relevant bleeding, defined as a composite of major bleeding or nonmajor clinically relevant bleeding. Assuming a 12-month incidence of the primary outcome of 4% with apixaban and an upper limit of the two-sided 95% confidence interval of the hazard ratio <2.0, 1,722 patients will be randomized, assuming an up to 10% loss in total patient-years (beta=80%; alpha one-sided=0.025). This trial has the potential to demonstrate that a regimen of extended treatment for patients with CT beyond an initial 6 months, with a reduced apixaban dose, has an acceptable risk of recurrent VTE recurrence and decreases the risk of bleeding.Thrombosis and Hemostasi

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008

    Get PDF
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients

    Towards a standardization of thrombin generation assessment: The influence of tissue factor, platelets and phospholipids concentration on the normal values of Thrombogram-Thrombinoscope assay

    No full text
    Abstract Background Thrombin generation assay was developed several years ago to mimic physiological coagulation mechanisms but it had important limitations. Thrombogram-Thrombinoscope assay using a fluorogenic substrate, allows obtaining thrombin generation curves in non-defibrinated platelet rich plasma (PRP) in a fully automated manner. Methods We standardised the methodology of Thrombogram-Thrombinoscope and we evaluated the precision of thrombin generation parameters (lag-time, maximum concentration of thrombin [Cmax], time required to reach Cmax [Tmax] and endogenous thrombin potential ETP) using different concentrations of recombinant human tissue factor, platelets or phospholipids. Normal values of thrombin generation assay were established in optimal experimental conditions. Results In the presence of low TF concentrations (final dilution of thromboplastin in plasma: 1/1000–1/2000) the Thrombogram assay showed intra-assay and inter-assay coefficients of variation lower than 9%. Thrombin generation parameters showed an important inter-individual variability and the coefficients of variation ranged from 18% to 50%. In PRP the lag-time, Cmax and Tmax but not the ETP, were influenced by TF concentration. Thrombin generation parameters were not influenced by variations of platelet concentration from 50 × 109/l to 400 × 109/l. The addition of synthetic procoagulant phospholipids in PPP strongly influenced all the parameters of thrombogram. For all the parameters of thrombogram a threshold effect was observed in the presence of phspholipid concentrations equal or higher to 4 μM. In frozen-thawed PRP the lag-time and the Tmax were significantly reduced and the Cmax was increased compared to the fresh PRP, but the ETP, the intra assay and the inter-assay coefficients of variation were similar in both test-systems. Conclusion Thrombogram-Thrombinoscope assay performed in fresh or in frozen-thawed PRP has an acceptable precision, with low inter-assay and intra-assay coefficient of variations. The concentration of TF is determinant for the normal values of the studied parameters of thrombin generation. When the assay is performed in PPP, thrombin generation parameters are influenced by the concentration of procoagulant synthetic phospholipids. The optimal experimental conditions were obtained in the presence of 1/1000 final dilution of thromboplastin, a platelet count higher than 50 × 109/l and a synthetic phospholipid concentration higher than 4 μM.</p

    Management of major bleeding complications and emergency surgery in patients on long-term treatment with direct oral anticoagulants, thrombin or factor-Xa inhibitors: Proposals of the Working Group on Perioperative Haemostasis (GIHP) - March 2013

    No full text
    Direct new oral anticoagulants (NOACs) - inhibitors of thrombin or factor Xa - are intended to be used largely in the treatment of venous thromboembolic disease or the prevention of systematic embolism in atrial fibrillation, instead of vitamin K antagonists. Like any anticoagulant treatment, they are associated with spontaneous or provoked haemorrhagic risk. Furthermore, a significant proportion of treated patients are likely to be exposed to emergency surgery or invasive procedures. Given the absence of a specific antidote, the action to be taken in these situations must be defined. The lack of data means that it is only possible to issue proposals rather than recommendations, which will evolve according to accumulated experience. The proposals presented here apply to dabigatran (Pradaxa(®)) and rivaroxaban (Xarelto(®)); data for apixaban and edoxaban are still scarce. For urgent surgery with haemorrhagic risk, the drug plasma concentration should be less or equal to 30ng/mL for dabigatran and rivaroxaban should enable surgery associated with a high bleeding risk. Beyond that, if possible, the intervention should be postponed by monitoring the drug concentration. The course to follow is then defined according to the NOAC and its concentration. If the anticoagulant dosage is not immediately available, worse propositions, based on the usual tests (prothrombin time and activated partial thromboplastin time), are presented. However, these tests do not really assess drug concentration or the risk of bleeding that depends on it. In case of serious bleeding in a critical organ, the effect of anticoagulant therapy should be reduced using a non-specific procoagulant drug as a first-line approach: activated prothrombin complex concentrate (aPCC) (FEIBA(®) 30-50U/kg) or non-activated PCC (50U/kg). In addition, for any other type of severe haemorrhage, the administration of a procoagulant drug, which is potentially thrombogenic in these patients, is discussed according to the NOAC concentration and the possibilities of mechanical haemostasis
    corecore