7,719 research outputs found

    Cortical lens opacities in the young patient- an indication for a lipogram?

    Get PDF
    Aim. To determine the characteristics and prevalence of lenticular opacification in patients with underlying dyslipidaemia.Methods. Eighty patients of both genders and all ages (18- 90 years) were enrolled in the trial if they met the inclusion criteria for dyslipidaernia: Patients were included if their fasting serum cholesterol and triglyceride concentrations were > 5.2 mmol/l and > 2.3 mmol/l, respectively, when measured on three separate occasions over a 1-month period. Patients were excluded if they suffered from any condition known to cause or predispose them to elevated lipid levels or lenticular opacification. Lenticular changes were assessed by means of a slit-lamp through the fully dilated pupil and other physical signs were documented subsequent to thorough physical evaluation.Results. In addition to the classic clinic signs of dyslipidaemia, 31% of patients had cortical lens opacities. Cortical opacities were twice as prevalent as Achilles tendon thickening (16.3%) in our study, the second most prevalent sign of elevated lipid levels. In the subgroup of patients aged under 50 years, 55% had lenticular opacities, predominantly cortical (80%).Conclusions. Cortical lens opacification was the most prevalent sign of dyslipidaemia and it occurred at a relatively young age in our trial population in those patients who were affected. Cortical lenticular opacification should be regarded as an indication for blood lipid profile evaluation

    Compositional Inversion Symmetry Breaking in Ferroelectric Perovskites

    Full text link
    Ternary cubic perovskite compounds of the form A_(1/3)A'_(1/3)A''_(1/3)BO_3 and AB_(1/3)B'_(1/3)B''_(1/3)O_3, in which the differentiated cations form an alternating series of monolayers, are studied using first-principles methods. Such compounds are representative of a possible new class of materials in which ferroelectricity is perturbed by compositional breaking of inversion symmetry. For isovalent substitution on either sublattice, the ferroelectric double-well potential is found to persist, but becomes sufficiently asymmetric that minority domains may no longer survive. The strength of the symmetry breaking is enormously stronger for heterovalent substitution, so that the double-well behavior is completely destroyed. Possible means of tuning between these behaviors may allow for the optimization of resulting materials properties.Comment: 4 pages, two-column style with 3 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#sai_is

    Nucleon Electromagnetic Form Factors from Lattice QCD using 2+1 Flavor Domain Wall Fermions on Fine Lattices and Chiral Perturbation Theory

    Full text link
    We present a high-statistics calculation of nucleon electromagnetic form factors in Nf=2+1N_f=2+1 lattice QCD using domain wall quarks on fine lattices, to attain a new level of precision in systematic and statistical errors. Our calculations use 323×6432^3 \times 64 lattices with lattice spacing a=0.084 fm for pion masses of 297, 355, and 403 MeV, and we perform an overdetermined analysis using on the order of 3600 to 7000 measurements to calculate nucleon electric and magnetic form factors up to Q2Q^2 \approx 1.05 GeV2^2. Results are shown to be consistent with those obtained using valence domain wall quarks with improved staggered sea quarks, and using coarse domain wall lattices. We determine the isovector Dirac radius r1vr_1^v, Pauli radius r2vr_2^v and anomalous magnetic moment κv\kappa_v. We also determine connected contributions to the corresponding isoscalar observables. We extrapolate these observables to the physical pion mass using two different formulations of two-flavor chiral effective field theory at one loop: the heavy baryon Small Scale Expansion (SSE) and covariant baryon chiral perturbation theory. The isovector results and the connected contributions to the isoscalar results are compared with experiment, and the need for calculations at smaller pion masses is discussed.Comment: 44 pages, 40 figure

    Cues used by the black fly, Simulium annulus, for attraction to the common loon (Gavia immer)

    Get PDF
    The parasitic relationship between a black fly, Simulium annulus, and the common loon (Gavia immer) has been considered one of the most exclusive relationships between any host species and a black fly species. To test the host specificity of this blood-feeding insect, we made a series of bird decoy presentations to black flies on loon-inhabited lakes in northern Wisconsin, U.S.A. To examine the importance of chemical and visual cues for black fly detection of and attraction to hosts, we made decoy presentations with and without chemical cues. Flies attracted to the decoys were collected, identified to species, and quantified. Results showed that S. annulus had a strong preference for common loon visual and chemical cues, although visual cues from Canada geese (Branta canadensis) and mallards (Anas platyrynchos) did attract some flies in significantly smaller numbers

    Ab initio study of ferroelectric domain walls in PbTiO3

    Full text link
    We have investigated the atomistic structure of the 180-degree and 90-degree domain boundaries in the ferroelectric perovskite compound PbTiO3 using a first-principles ultrasoft-pseudopotential approach. For each case we have computed the position, thickness and creation energy of the domain walls, and an estimate of the barrier height for their motion has been obtained. We find both kinds of domain walls to be very narrow with a similar width of the order of one to two lattice constants. The energy of the 90-dergree domain wall is calculated to be 35 mJ/m^2, about a factor of four lower than the energy of its 180-degree counterpart, and only a miniscule barrier for its motion is found. As a surprising feature we detected a small offset of 0.15-0.2 eV in the electrostatic potential across the 90-degree domain wall.Comment: 12 pages, with 9 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/bm_dw/index.htm

    Optical Coatings as Mirrors for Optical Diagnostics

    Get PDF
    The aim of this work was to provide a comprehensive insight concerning coated films which might be used for first mirrors in ITER. The influence of the mirror crystallite size has been addressed as well as the coating techniques to provide nanocrystalline films. Tests of coated mirrors both in laboratories and in tokamaks are reviewed. For the tokamak tests a wide angle camera system has been installed in JET-ILW which is composed of a mirror box with 3 stainless steel mirrors coated with rhodium viewing the torus through a conically shaped aperture. The system delivered the required image quality for plasma monitoring and wall protection. No or insignificant degradation of the optical transmittance has been observed during the experimental campaign in 2014 with about 3000 plasma pulses in different magnetic field configurations

    Anisotropic mass ejection in binary mergers

    Full text link
    We investigate the mass loss from a rotationally distorted envelope following the early, rapid in-spiral of a companion star inside a common envelope. For initially wide, massive binaries (M_1+M_2=20M_{\odot}, P\sim 10 yr), the primary has a convective envelope at the onset of mass transfer and is able to store much of the available orbital angular momentum in its expanded envelope. Three-dimensional smoothed particle hydrodynamics calculations show that mass loss is enhanced at mid-latitudes due to shock reflection from a torus-shaped outer envelope. Mass ejection in the equatorial plane is completely suppressed if the shock wave is too weak to penetrate the outer envelope in the equatorial direction (typically when the energy deposited in the star is less than about one-third of the binding energy of the envelope). We present a parameter study to show how the geometry of the ejecta depends on the angular momentum and the energy deposited in the envelope during a merging event. Applications to the nearly axisymmetric, but very non-spherical nebulae around SN1987A and Sheridan 25 are discussed, as well as possible links to RY Scuti and the Small Magellanic Cloud object R4.Comment: 10 pages, 11 figures, accepted for publication in MNRAS. Figs 1, 2 and 10 reduced in siz
    corecore