341 research outputs found

    On the use of acoustic particle velocity fields in adjoint-based inversion

    Get PDF
    Following the recent interest in the use of combined pressure and particle motion sensors in underwater acoustics and signal processing, some general aspects regarding the modeling and multipath phenomenology of acoustic particle velocity fields in shallow water environments have been studied. In this paper we will address a number of issues associated with the incorporation of vector sensor data (pressure and particle velocity) into adjoint-based inversion schemes. Specifically, we will discuss the ability of a semi-automatic adjoint approach to compute the necessary gradient information without the need for an analytic model of the adjoint particle velocity field. Solutions to the forward propagation of acoustic pressure are computed using an implicit finite-difference parabolic equation solver while the particle velocity is calculated locally at each grid point. Some numerical examples of vector sensor inversion results are provided

    Phase coherence phenomena in superconducting films

    Full text link
    Superconducting films subject to an in-plane magnetic field exhibit a gapless superconducting phase. We explore the quasi-particle spectral properties of the gapless phase and comment on the transport properties. Of particular interest is the sensitivity of the quantum interference phenomena in this phase to the nature of the impurity scattering. We find that films subject to columnar defects exhibit a `Berry-Robnik' symmetry which changes the fundamental properties of the system. Furthermore, we explore the integrity of the gapped phase. As in the magnetic impurity system, we show that optimal fluctuations of the random impurity potential conspire with the in-plane magnetic field to induce a band of localized sub-gap states. Finally, we investigate the interplay of the proximity effect and gapless superconductivity in thin normal metal-superconductor bi-layers.Comment: 13 pages, 8 figures include

    Operation of the DC Current Transformer intensity monitors at FNAL during Run II

    Get PDF
    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II

    Magnetotunneling spectroscopy of mesoscopic correlations in two-dimensional electron systems

    Full text link
    An approach to experimentally exploring electronic correlation functions in mesoscopic regimes is proposed. The idea is to monitor the mesoscopic fluctuations of a tunneling current flowing between the two layers of a semiconductor double-quantum-well structure. From the dependence of these fluctuations on external parameters, such as in-plane or perpendicular magnetic fields, external bias voltages, etc., the temporal and spatial dependence of various prominent correlation functions of mesoscopic physics can be determined. Due to the absence of spatially localized external probes, the method provides a way to explore the interplay of interaction and localization effects in two-dimensional systems within a relatively unperturbed environment. We describe the theoretical background of the approach and quantitatively discuss the behavior of the current fluctuations in diffusive and ergodic regimes. The influence of both various interaction mechanisms and localization effects on the current is discussed. Finally a proposal is made on how, at least in principle, the method may be used to experimentally determine the relevant critical exponents of localization-delocalization transitions.Comment: 15 pages, 3 figures include

    Gap Fluctuations in Inhomogeneous Superconductors

    Full text link
    Spatial fluctuations of the effective pairing interaction between electrons in a superconductor induce variations of the order parameter which in turn lead to significant changes in the density of states. In addition to an overall reduction of the quasi-particle energy gap, theory suggests that mesoscopic fluctuations of the impurity potential induce localised tail states below the mean-field gap edge. Using a field theoretic approach, we elucidate the nature of the states in the `sub-gap' region. Specifically, we show that these states are associated with replica symmetry broken instanton solutions of the mean-field equations.Comment: 11 pages, 3 figures included. To be published in PRB (Sept. 2001

    The Spectrum of the Dirac Operator in the Linear Sigma Model with Quarks

    Full text link
    We derive the spectrum of the Dirac operator for the linear sigma-model with quarks in the large N_c approximation using renormalization group flow equations. For small eigenvalues, the Banks-Casher relation and the vanishing linear term are recovered. We calculate the coefficient of the next to leading term and investigate the spectrum beyond the low energy regime.Comment: 15 pages, 6 figures, to appear in Phys. Rev.

    Dimensional Crossover of Localisation and Delocalisation in a Quantum Hall Bar

    Full text link
    The 2-- to 1--dimensional crossover of the localisation length of electrons confined to a disordered quantum wire of finite width LyL_y is studied in a model of electrons moving in the potential of uncorrelated impurities. An analytical formula for the localisation length is derived, describing the dimensional crossover as function of width LyL_y, conductance gg and perpendicular magnetic field BB . On the basis of these results, the scaling analysis of the quantum Hall effect in high Landau levels, and the delocalisation transition in a quantum Hall wire are reconsidered.Comment: 12 pages, 7 figure

    A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose

    Get PDF
    Archaea are characterised by a complex metabolism with many unique enzymes that differ from their bacterial and eukaryotic counterparts. The thermoacidophilic archaeon Sulfolobus solfataricus is known for its metabolic versatility and is able to utilize a great variety of different carbon sources. However, the underlying degradation pathways and their regulation are often unknown. In this work, we analyse growth on different carbon sources using an integrated systems biology approach. The comparison of growth on L-fucose and D-glucose allows first insights into the genome-wide changes in response to the two carbon sources and revealed a new pathway for L-fucose degradation in S. solfataricus. During growth on L-fucose we observed major changes in the central carbon metabolic network, as well as an increased activity of the glyoxylate bypass and the 3-hydroxypropionate/4-hydroxybutyrate cycle. Within the newly discovered pathway for L-fucose degradation the following key reactions were identified: (i) L-fucose oxidation to L-fuconate via a dehydrogenase, (ii) dehydration to 2-keto-3-deoxy-L-fuconate via dehydratase, (iii) 2-keto-3-deoxy-L-fuconate cleavage to pyruvate and L-lactaldehyde via aldolase and (iv) L-lactaldehyde conversion to L-lactate via aldehyde dehydrogenase. This pathway as well as L-fucose transport shows interesting overlaps to the D-arabinose pathway, representing another example for pathway promiscuity in Sulfolobus species

    FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    Get PDF
    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95 confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. © 2014 Cancer Research UK

    Smoking-associated gene expression alterations in nasal epithelium reveal immune impairment linked to lung cancer risk

    Get PDF
    BACKGROUND: Lung cancer is the leading cause of cancer-related death in the world. In contrast to many other cancers, a direct connection to modifiable lifestyle risk in the form of tobacco smoke has long been established. More than 50% of all smoking-related lung cancers occur in former smokers, 40% of which occur more than 15 years after smoking cessation. Despite extensive research, the molecular processes for persistent lung cancer risk remain unclear. We thus set out to examine whether risk stratification in the clinic and in the general population can be improved upon by the addition of genetic data and to explore the mechanisms of the persisting risk in former smokers. METHODS: We analysed transcriptomic data from accessible airway tissues of 487 subjects, including healthy volunteers and clinic patients of different smoking statuses. We developed a computational model to assess smoking-associated gene expression changes and their reversibility after smoking is stopped, comparing healthy subjects to clinic patients with and without lung cancer. RESULTS: We find persistent smoking-associated immune alterations to be a hallmark of the clinic patients. Integrating previous GWAS data using a transcriptional network approach, we demonstrate that the same immune- and interferon-related pathways are strongly enriched for genes linked to known genetic risk factors, demonstrating a causal relationship between immune alteration and lung cancer risk. Finally, we used accessible airway transcriptomic data to derive a non-invasive lung cancer risk classifier. CONCLUSIONS: Our results provide initial evidence for germline-mediated personalized smoke injury response and risk in the general population, with potential implications for managing long-term lung cancer incidence and mortality
    corecore