82,582 research outputs found
Imperfections in focal conic domains: the role of dislocations
It is usual to think of Focal Conic Domains (FCD) as perfect geometric
constructions in which the layers are folded into Dupin cyclides, about an
ellipse and a hyperbola that are conjugate. This ideal picture is often far
from reality. We have investigated in detail the FCDs in several materials
which have a transition from a smectic A (SmA) to a nematic phase. The ellipse
and the hyperbola are seldom perfect, and the FCD textures also suffer large
transformations (in shape or/and in nature) when approaching the transition to
the nematic phase, or appear imperfect on cooling from the nematic phase. We
interpret these imperfections as due to the interaction of FCDs with
dislocations. We analyze theoretically the general principles subtending the
interaction mechanisms between FCDs and finite Burgers vector dislocations,
namely the formation of kinks on disclinations, to which dislocations are
attached, and we present models relating to some experimental results. Whereas
the principles of the interactions are very general, their realizations can
differ widely in function of the boundary conditions.Comment: 19 pages, 18 figure
TOPEX satellite concept. TOPEX option study report
Candidate bus equipment from the Viking, Applications Explorer Mission, and Small Scientific Satellite programs for application to the TOPEX mission options is assessed. Propulsion module equipment and subsystem candidates from the Applications Explorer Mission satellites and the Small Scientific Satellite spacecraft are evaluated for those TOPEX options. Several subsystem concepts appropriate to the TOPEX options are described. These descriptions consider performance characteristics of the subsystems. Cost and availability information on the candidate equipment and subsystems are also provided
Modality effects in vocabulary acquisition
It is unknown whether modality affects the efficiency with which humans learn novel word forms and their meanings, with previous studies reporting both written and auditory advantages. The current study implements controls whose absence in previous work likely offers explanation for such contradictory findings. In two novel word learning experiments, participants were trained and tested on pseudoword - novel object pairs, with controls on: modality of test, modality of meaning, duration of exposure and transparency of word form. In both experiments word forms were presented in either their written or spoken form, each paired with a pictorial meaning (novel object). Following a 20-minute filler task, participants were tested on their ability to identify the picture-word form pairs on which they were trained. A between subjects design generated four participant groups per experiment 1) written training, written test; 2) written training, spoken test; 3) spoken training, written test; 4) spoken training, spoken test. In Experiment 1 the written stimulus was presented for a time period equal to the duration of the spoken form. Results showed that when the duration of exposure was equal, participants displayed a written training benefit. Given words can be read faster than the time taken for the spoken form to unfold, in Experiment 2 the written form was presented for 300 ms, sufficient time to read the word yet 65% shorter than the duration of the spoken form. No modality effect was observed under these conditions, when exposure to the word form was equivalent. These results demonstrate, at least for proficient readers, that when exposure to the word form is controlled across modalities the efficiency with which word form-meaning associations are learnt does not differ. Our results therefore suggest that, although we typically begin as aural-only word learners, we ultimately converge on developing learning mechanisms that learn equally efficiently from both written and spoken materials
Stroke units: The implementation of a complex intervention
This article reports on selected findings from an action research study that looked at the lessons learnt from setting up a new in-patient stroke service in a London teaching hospital. Key participants in the design and evaluation of this 2-year study included members of the multi-professional stroke team and support staff within the unit, the hospital management team and representatives of patients and carers. Mixed methods (focus groups, indepth interviews, audits, documentary analysis, participant observation field notes) were used to generate data. Findings demonstrated positive change overtime with four main themes emerging from the process: building a team; developing practice-based knowledge and skills in stroke; valuing the central role of the nurse in stroke care; and creating an organisational climate for supporting change. The interplay of these non-linear, but interrelated factors is supported by complexity theory, which includes exploration of how the sum of a whole can be more than its constituent parts. Findings are likely to be of interest to practitioners, managers and policy makers interested in supporting change in a learning organisation
Neutrino Capture and r-Process Nucleosynthesis
We explore neutrino capture during r-process nucleosynthesis in
neutrino-driven ejecta from nascent neutron stars. We focus on the interplay
between charged-current weak interactions and element synthesis, and we
delineate the important role of equilibrium nuclear dynamics. During the period
of coexistence of free nucleons and light and/or heavy nuclei, electron
neutrino capture inhibits the r-process. At all stages, capture on free
neutrons has a larger impact than capture on nuclei. However, neutrino capture
on heavey nuclei by itself, if it is very strong, is also detrimental to the
r-process until large nuclear equilibrium clusters break down and the classical
neutron-capture phase of the r-process begins. The sensitivity of the r-process
to neutrino irradiation means that neutrino-capture effects can strongly
constrain the r-process site, neutrino physics, or both. These results apply
also to r-process scenarios other than neutrino-heated winds.Comment: 20 pages, 17 figures, Submitted to Physical Review
NICMOS2 hubble space telescope observations of the embedded cluster associated with Mon R2: Constraining the substellar initial mass function
We have analyzed Hubble Space Telescope NICMOS2 F110W-, F160W-, F165M-, and F207M-band images covering the central 1' × 1' region of the cluster associated with Mon R2 in order to constrain the initial mass function (IMF) down to 20M_J. The flux ratio between the F165M and F160W bands was used to measure the strength of the water-band absorption feature and select a sample of 12 out of the total sample of 181 objects that have effective temperatures between 2700 and 3300 K. These objects are placed in the H-R diagram together with sources observed by Carpenter et al. to estimate an age of ~1 Myr for the low-mass cluster population. By constructing extinction-limited samples, we are able to constrain the IMF and the fraction of stars with a circumstellar disk in a sample that is 90% complete for both high- and low-mass objects. For stars with estimated masses between 0.1 and 1.0 M_☉ for a 1 Myr population with A_V ≤ 19 mag, we find that 27% ± 9% have a near-infrared excess indicative of a circumstellar disk. The derived fraction is similar to or slightly lower than the fraction found in other star-forming regions of comparable age. We constrain the number of stars in the mass interval 0.08-1.0 M_☉ to the number of objects in the mass interval 0.02-0.08 M_☉ by forming the ratio R^(**) = N(0.08-1 M_☉)/N(0.02-0.08 M_☉) for objects in an extinction-limited sample complete for A_V ≤ 7 mag. The ratio is found to be R^(**) = 2.2 ± 1.3, assuming an age of 1 Myr, consistent with the similar ratio predicted by the system IMF proposed by Chabrier. The ratio is similar to the ratios observed toward the Orion Nebula Cluster and IC 348, as well as the ratio derived in the 28 deg^2 survey of Taurus by Guieu et al
Thermomechanical Behavior of the HL-LHC 11 Tesla Nb3Sn Magnet Coil Constituents during Reaction Heat Treatment
The knowledge of the temperature induced changes of the superconductor
volume, and of the thermo-mechanical behaviour of the different coil and
tooling materials is required for predicting the coil geometry and the stress
distribution in the coil after the Nb3Sn reaction heat treatment. In the
present study we have measured the Young's and shear moduli of the HL-LHC 11 T
Nb3Sn dipole magnet coil and reaction tool constituents during in situ heat
cycles with the dynamic resonance method. The thermal expansion behaviours of
the coil components and of a free standing Nb3Sn wire were compared based on
dilation experiments.Comment: 6 pages, 12 figures, presented at MT25 conferenc
- …