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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract

It is usual to think of Focal Conic Domains (FCD) as perfect geometric constructions in which

the layers are folded into Dupin cyclides, about an ellipse and a hyperbola that are conjugate.

This ideal picture is often far from reality. We have investigated in detail the FCDs in several

materials that have a transition from a smectic A (SmA) to a nematic phase (N). The ellipse and

the hyperbola are seldom perfect, and the FCD textures also suffer large transformations (in shape

or/and in nature) when approaching the transition to the nematic phase, or appear imperfect on

cooling from the nematic phase. We interpret these imperfections as due to the interaction of

FCDs with dislocations. We analyze theoretically the general principles subtending the interaction

mechanisms between FCDs and finite Burgers vector dislocations, namely the formation of kinks

on disclinations, to which dislocations are attached, and we present models relating to some ex-

perimental results. Whereas the principles of the interactions are very general, their realizations

can differ widely in function of the boundary conditions.

PACS numbers: 61.30Jf, 61.72Lk
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I. INTRODUCTION

The discussion that follows, about the behavior of defects in the SmA (smectic A) phase

is inspired by a few experimental polarized light microscopy observations reported in [1]

and summarized below. These observations have since been developed [2]. They relate

to a domain of temperature that extends approximately 1◦C below the SmA−→N phase

transition, some of the most relevant experiments having been done with an accuracy of

±1mK. The very near vicinity of the transition, where phenomena usually qualified of

transitional do happen, could not be investigated, and then has not been. It appears in the

domain we have searched, the focal conic domains suffer considerable visible modifications,

with remarkable imperfections in shape. It is the nature of these interactions that we wish

to describe in the present article.

The defects and textures of the SmA and N phases are reasonably well understood at

mesoscopic and macroscopic scales, at least for their static physical and topological proper-

ties. Contrariwise, the role played by the smectic defects at the phase transition has been

little investigated. It is precisely in this region that the FCDs (focal conic domains), the only

defects that are fully observable in light microscopy, show these large modifications that, we

shall argue, are essentially due to their interactions with dislocations. The SmA−→N phase

transition has been the object of many investigations (for a review, see [3]). The compression

modulus B tends towards a value (equal to or slightly different from zero, according to the

author, see e.g., [4, 5, 6, 7]); its variation is noticeable in a large temperature range (more

than half a degree in the compounds that we have investigated). Notice that in this range,

K1 (the splay modulus) stays practically constant. The question of K (the saddle-splay

modulus) has been little investigated yet, either theoretically or experimentally (see [8] for

the nematic phase); the results that follow have been interpreted by assuming that K too

stays practically constant. K2 (the twist modulus) is infinite in layered media as long as the

director remains along the layer normal (which might be infirmed very close to the nematic

transition).

Let us now recall some defect features of the SmA phase. These defects are of two types,

focal conic domains (which are especial types of disclinations) and dislocations:

- focal conic domains (FCDs): the layers are parallel, so that there is no strain energy but

only curvature energy. The normals to the layers envelop two focal surfaces on which the
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curvature is infinite (the energy diverges). The focal surfaces are degenerate into lines in

order to minimize this large curvature energy. These lines are necessarily two confocal con-

ics, an ellipse and a hyperbola, observable by optical microscopy [9, 10, 11, 12, 13]. The

layers are folded along Dupin cyclides, surfaces that have the topology of tori. And indeed

the simplest geometric case is when the ellipse E is degenerate into a circle - the confocal

hyperbola H being degenerate into a straight line perpendicular to the plane of the circle and

going through its centre. In this case the layers are nested tori, restricted in fact to those

parts of the tori that have negative Gaussian curvature G = σ1σ2. The G < 0 case is indeed

the most usual case met experimentally in generic Dupin cyclides, see [14, 15]. We shall not

consider in the sequel the situations where the layers are restricted to those parts that have

positive Gaussian curvature; and as a matter of fact the mixed case is not observed. In the

toric case just alluded, the focal conic domain is the region of space occupied by those nested

layers restricted to their G < 0 parts; it is bound by a cylinder parallel to H and whose

cross section is E. In the generic case, the region of space where the layers have G < 0 is

bound by two half-cylinders of revolution, that meet on the ellipse, and whose generatrices

are parallel to the hyperbola asymptotes Fig.1a. This is the picture of an ideal, complete,

FCD. Fig. 1b illustrates a case where G < 0 and G > 0 regions are visible in the same

FCD; it does not correspond to any situation met in practice. Models for incomplete FCDs

are shown farther ahead (Fig.9a and 9b). The important question how FCDs are packed in

space [10, 11] will be approached, but only incidentally.

The curvature energy fFCD of a complete, ideal, focal conic domain depends on K1 and

K̄:

fFCD = fbulk + fcore = 4πa(1 − e2)K(e2)[K1 ln
2b

ξ
− 2K1 − K̄] + fcore (1)

where a is the semi-major axis of the ellipse, b the semi-minor axis, e the eccentricity and

K(e2) the complete elliptic integral of the first species [14]. It is believed that the energy

fstrain attached to the thickness variation of the layers is negligible compared to fFCD. Very

little is known about the core contribution fcore, but it is usually assumed that it scales

as aK1. Thus, at a and e constant, the FCD total energy does not vary significantly in

the domain of temperature under investigation, if our assumptions about the temperature

variation of K1 and K̄ turn to be true.

- screw dislocation lines and edge dislocation lines: : their unit length line energies can be
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written:

fs =
1

128

Bb4

disl

r2
c,screw

+ fcore, fe =
1

2

√

K1B
b2

disl

rc,edge

+ fcore, (2)

where bdisl = nd0 is the dislocation Burgers vector (d0 is the layer thickness) and rc is

the core radius. It is visible that the elastic contributions (the off-core terms in Eq. 2)

decrease when T gets closer to TAN , because B decreases whereas the temperature changes

of the core energies can be neglected or even decrease - indeed, in a näıve model inspired

by the solid-liquid transition, these energies are of order kB(TAN − T )
πr2

c

δ2d0

per unit length

of dislocation line, i.e. small; δ2d0 being the volume occupied by a molecule, and rc

is microscopic, practically constant (of order δ for a screw dislocation, d0 for an edge

dislocation). The decrease of B, as already stated, is effective on a large temperature range

before the transition, probably larger than 1◦C, see [4, 5, 6]. The core radii scale as the

correlation lengths very close to the transition, but this region is of no interest to us.

Comments on the experimental conditions

The FCDs are stable and immobile in the lower part of the temperature range we have inves-

tigated, they however quite often display variations to their ideal shape. The transformations

of the FCDs, when approaching the transition, are visible with a simple optical microscopy

set up. They appear as rather sudden phenomena, about one degree before reaching TAN

from below, at a temperature T ∗ that depends slightly on the boundary conditions. Our

observations relate to thermotropic compounds, two belonging to the cyanobiphenyl series,

8CB and 9CB. We also noticed that the FCD texture of the 10CB compound does not display

any conspicuous modifications when T increases, but this chemical does not have a nematic

phase; the transition is direct to the isotropic phase. This is in contrast with the other com-

pounds, that have a SmA→N transition. In these latter cases, either the FCDs disappear

by shrinking before the phase transition, or the ellipse and the hyperbola transform into

disclinations in the nematic phase; the first situation occurs usually for small and medium

size (tens of microns in diameter) slowly FCDs heated (heating rate lower than 0.1◦C/min),

the second one occurs for large (hundred of microns and more in diameter) FCDs, when

they are brought to the transition under faster heating (this linear scaling is conditional,

depending on the heating rate: at a high heating rate of several degrees per minute, even
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small FCDs have no time to shrink). When cooling down from the nematic phase, the FCD

textures in 8CB, 8OCB and 9CB usually do not display ideal FCDs. Instead FCD fragments

grow, join and form focal domains, which in many cases are not ideal. The double helical

objects described in [16], which are splitting modes of giant screw dislocations, are obtained

this way. These imperfect FCDs (iFCD) can be quenched to lower temperatures where they

stabilize because of a much reduced mobility (high viscosity). The boundary conditions play

an important role in the definition of the final texture.

We believe that the transformations of the FCD texture in 8CB, 9CB, when approaching the

nematic phase, as well as the formation of iFCDs when coming from above, are due to the

interaction of the FCDs with dislocations. Dislocations are generally not visible by optical

microscopy, except when their Burgers vector is large (micron size), which situation occurs

for edge dislocations, clustering into oily streaks [9, 10, 11] or screw dislocations split into

two k = 1

2
disclinations [16, 17]. We argue here that the presence of numerous dislocations

can be revealed via their distorting action on the FCDs, which are visible.

II. GEOMETRIC RULES FOR IDEAL FOCAL CONIC DOMAINS

Essential for a better understanding of the modifications suffered by FCDs when inter-

acting with dislocations are the following properties, that characterize them when they are

in an ideal state.

(a)- Projected orthogonally upon a plane, along any direction, the ellipse E and the

hyperbola H cross at right angles, Fig.2a. This is a particular case of Darboux’s theorem

[18], which states that if a congruence of straight lines is orthogonal to a set of parallel

surfaces, the two focal surfaces Σ1 and Σ2 (that this congruence generically envelops) are

such that the planes tangent to Σ1 and Σ2 at the contact points M1 and M2 of any line ∆

of the congruence are orthogonal. This is the reason why the projections of the ellipse E

and the hyperbola H belonging to the same FCD look orthogonal. Here the straight line

∆ is a normal to the Dupin cyclides, and indicates the average direction of the molecules.

Darboux’s theorem is empirically satisfied by a number of FCDs, which in that sense are

ideal FCDs; when it is not, (see Fig.2b) it implies that the FCD in question is geometrically

interacting with other defects, as we shall discuss in the sequel.

(b)- The inner layers of an isolated complete FCD can be continued outside the FCD by
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planar layers perpendicular to the asymptotes (this is obvious from Fig. 1a), which can form

two sets of parallel planes meeting on the plane of the ellipse, along a direction parallel to

the minor axis of the ellipse, at an angle ω. The plane of the ellipse is therefore a tilt grain

boundary. In a solid crystal, a tilt grain boundary is usually split into edge dislocations

whose Burgers vectors are perpendicular to its plane. The same is of course possible for a

tilt grain boundary in a layered medium. One expects that some of those dislocations meet

the ellipse. As a matter of fact, the ellipse of an isolated FCD is the termination of a set of

dislocations whose total Burgers vector bdisl = 4ae = 4c, as explained below.

(c)- Two neighboring ideal FCDs whose ellipses are in the same plane and tangent at

some point M are in contact along at least one line segment joining M to a point P at which

the two hyperbolae intersect. This geometry, frequently observed, is a particular realization

of the law of corresponding cones [9, 10, 11], a geometrical property that rules the way

FCDs pack in space. A tilt grain boundary whose angle of misorientation ω is neither too

small nor too large is usually made of a FCD packing such that the ellipses belong to the

grain boundary, have a constant eccentricity e = sin ω
2
, the asymptotes of the hyperbolae

being parallel [19], see Fig.3. And indeed the free interstices of the packing of ellipses in the

plane of the grain boundary are filled with dislocations [19]. There is therefore a relation of

equivalence between dislocations and focal conic domains [20, 21].

III. KINKS ON DISCLINATIONS

A. Wedge and twist disclinations. FCD confocal conics are disclinations.

Disclinations are typical line defects in a medium endowed with a director order parameter

[22]. One distinguishes wedge disclinations, whose rotation vector
−→
Ω is along the disclination

line, and twist disclinations, whose rotation vector
−→
Ω is orthogonal to the disclination line.

As shown in [9, 10], there are necessarily dislocations attached to a line segment of twist

character. Let us remind that the focal lines of a FCD, are, by nature, disclinations.

(a)- The hyperbola is a disclination of strength k = 1, whose rotation vector (
−→
Ω = 2π

−→
t )

varies in direction (not in length) all along the hyperbola: at each point of the hyperbola

it is parallel to the tangent
−→
t at this point. The layer geometry is axial-symmetric in the

vicinity of the hyperbola. Insofar as it is a disclination, the hyperbola is of wedge character;
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there are no attached dislocations.

(b)- If the full cyclides are considered, as in Fig. 1b, the layers surround the ellipse are

axial-symmetric about the tangent to the ellipse; thus the ellipse appears also as a k = 1

wedge line. But, if one restricts to the inner G < 0 layers of the complete FCD, supplemented

by the outer planar layers, the ellipse appears as a disclination of strength k =
1

2
, whose

rotation vector (
−→
Ω = π

−→
t ) varies (in direction but not in length) all along the ellipse;

−→
t is in

the plane of the ellipse and tangent to the layer inside the ellipse, Fig.4. This disclination is

of mixed character, the attached dislocations are precisely those that form the tilt boundary

[15, 19, 23] whose existence has been established above; see below for details.

B. Kinks, generic properties.

Modifications to the twist/wedge character of a disclination can be achieved in the generic

case by attaching/detaching new dislocations to the line. Such operations modify the shape

of the line, by the introduction of kinks, Fig.5. For instance, in order to attach at some

point A on a wedge line L a set of dislocations of total Burgers vector
−→
b disl, one has to

introduce a kink
−→
AB, with a component perpendicular to L, (i.e. a segment

−→
AB having a

twist component), such that

−→
b disl = 2 sin

Ω

2

−→
t ×

−→
AB, (3)

where
−→
t is an unit vector tangent to the line and

−→
Ω (

−→
Ω = Ω

−→
t ) is the rotation invariant

carried by the disclination; see [11, 23] and the Appendix for a demonstration of Eq. (3).

In practice lines of interest are of strength |k| =
1

2
, |
−→
Ω | = π. Reciprocally, the presence

of a kink reveals the presence of dislocations attached to the line. The above picture of a

kink says nothing about the nature (edge or screw) of the attached dislocations, and the

way they relax and disperse through space about the disclination line. The line flexibility,

i.e. the main property at work when the medium is deformed, elastically or by flow, takes

its origin here, in this interplay of the disclination line with dislocations.

A kink can be infinitesimally small;

−→
dbdisl = 2 sin

Ω

2

−→
t ×

−→
ds, (4)
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where
−→
ds is an infinitesimal element along the line [23]. A density of infinitesimally small

kinks modifies the curvature of the line. A dislocation attached to an infinitesimally small

kink has an infinitesimally small Burgers vector; a dislocation attached to a finite kink may

have a finite Burgers vector, as we see now.

C. Kinks in a SmA

Let us now consider in more detail the geometry of the attachment of dislocations to a

focal line in a FCD. We first state some general properties, and then consider separately the

case of the ellipse and the case of the hyperbola.

Again, the dislocations emanating from the kink have to belong to one of the two following

categories: they are either dislocations with infinitesimal Burgers vectors whose directions

are parallel to the layer dislocations of the layer stacking, or with Burgers vectors |
−→
b disl| =

nd0 perpendicular to the layer (these are the usual SmA quantified dislocations). Note that

in both cases the Burgers vectors are translation symmetry vectors; they are perfect Burgers

vectors in the sense of the Volterra process. We consider them successively.

Infinitesimal Burgers vectors relate to dislocation densities that relax by the effect of

viscosity; they affect the curvature of the layers and consequently, as alluded just above,

they also affect their thickness, since the layers have to keep in contact. We shall not

expatiate on such defects, which are not relevant to our subject. Just notice that the theory

has been developed for solids since long (see [24] for a general review) and is related to the

concept of densities of infinitesimal dislocations in nematics and cholesterics introduced first

in [23]; see also [11, 17]. An essential point worth emphasizing is that a continuous density

of infinitesimal dislocations can be attended by a strainless, elastically relaxed, state. In our

case, this would correspond to a state where the layers keep parallel. Continuous dislocation

with Burgers vectors parallel to the layers do not introduce any kind of singularity of the

SmA order parameter. Eq. (4) indicates that the related kink
−→
ds and that

−→
t are both

perpendicular to
−→
dbdisl, which condition does not specify any special direction for d−→s .

Finite Burgers vectors: this case is better represented by Eq. (3), because the Burgers

vector and the kink
−→
AB are both finite.

−→
AB and

−→
t have both to be in a plane tangent

to the local layer. To an elementary dislocation |
−→
b disl| = d0 corresponds an elementary

kink. An elementary kink is microscopic (with |k| =
1

2
, |
−→
Ω | = π, one has AB = 2d0); one
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can thus possibly have a density of such elementary kinks, rendering the line curved when

observed at a mesoscopic scale. This does not exclude the possibility that infinitesimally

small dislocations are attached to finite kinks.

Simple as they look, the application of these criteria requires however some care.

D. Quantified Burgers vectors attached to an ellipse.

Fig.4 is a schematic view of the properties of an ellipse, belonging to an ideal FCD,

which are in relation to its k =
1

2
disclination character. The layer geometry is different

inside and outside the ellipse. Inside, the Dupin cyclide layers intersect the plane of the

ellipse perpendicularly. Outside , the layers are planar and perpendicular to the asymptotic

directions. The change of geometry between the inside and the outside is achieved by a

rotation of the layers about the local rotation vector
−→
Ω = Ω

−→
t ;

−→
Ω is parallel to the layers

(inside and outside) and is along the intersection of the layers with the plane of the ellipse,

inside.

The layer at M (M being a running point on the ellipse) is indeed folded inside about

the local
−→
t direction, is singular at M (it is a conical point), and extends outside along a

fold made of two half planes symmetrical with respect the ellipse plane, each perpendicular

to one or the other of the two asymptotic directions of the confocal hyperbola, and thereby

making an angle ω = 2 sin−1 e about a direction parallel to the minor axis of the ellipse

(see [11], chapter 10). The ellipse plane outside the ellipse is therefore a tilt boundary of

misorientation angle ω, which can be accommodated by edge dislocations of Burgers vectors

multiple of d0, perpendicular to the plane of the tilt boundary, i.e. the plane of the ellipse

outside. There is one such dislocation |
−→
b disl| = 2d0 per layer counted inside the ellipse.

These results are similar to those obtained in section II; they also justify the choice of
−→
Ω

we have done for the disclination rotation along the ellipse.

The same result can be obtained by using Eq. (4). Let us parameterize the ellipse in

polar coordinates with the origin at the physical focus, Fig.6.

r =
p

1 + e cos φ
, (5)

where p =
b2

a
and φ is the polar angle. Applying Eq. (4), one then finds that the k =

1

2
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ellipse disclination has an attached Burgers vector density

dbdisl = 2dr, (6)

The total Burgers vector attached to the ellipse is

∫ φ=π

φ=0

dbdisl = 4c, as indicated above.

If one takes dr = d0, - an approximation which makes sense (up to second order), since

d0 is so small compared to the size a of the ellipse - it is visible that the points M{r, φ}

and N{r + dr, φ + dφ} are on two parallel smectic layers at a distance d0. Notice that the

density of dislocations is constant if measured along the major axis:
dbdisl

dx
= −2e. There are

no dislocations attached to the singular circle of a toric FCD, as the eccentricity e vanishes.

An ellipse can be thought of as a circle kinked at the layer scale.

IV. KINKED FOCAL CONIC DOMAINS

A. Frequent geometries for a kinked ellipse.

The kinking of the ellipse takes different geometries, whether the dislocations at stake are

located inside the ellipse (where
−→
b disl = nd0 is in the plane of the ellipse, the layers being

perpendicular to this plane) or outside (where
−→
b disl = nd0 is perpendicular to the plane of

the ellipse).

Outside the FCD; in that case the kinking of the ellipse is in its plane. This in-plane kinked

ellipse, we call it a Mouse.(Fig.7). If the dislocation lines attached to the ellipse disperse

away outside the focal conic domain, i.e. in a region of space where the layers are in the plane

of the ellipse;
−→
t , which varies in direction all along the ellipse, is in this plane. Applying

Eq. (3), it appears that the kinks have to be in the plane of the ellipse. This configuration

has been observed, in a situation where the kinks are so small and have such a high density

that the kinked ellipse appears to be continuous, but its shape departs considerably from a

’perfect’ ellipse; it is smoothly distorted by the in-plane kinks: that is the reason why we

use the term of Mouse (Fig.7a). Fig.7b provides a model for such kinks, (which always go

by pairs), drawn here at a scale which has no relation with the real scale. The photograph

of Fig.7a is taken from the rim of a free standing film, in a region where the thickness of

the film is quickly changing, and the wedge angle ω(r) between the opposite free boundaries

varies monotonically. The anchoring conditions are homeotropic; there is therefore a tilt
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boundary in the mid-plane of the film, but with a variable misorientation angle. The Mouse

is in this mid-plane; the extra dislocations attached to the kinks (edge dislocations in the

mid-plane) relax the variation of ω by contributing to the modification of the density
dbdisl

ds
of dislocations in this plane; see [2] for a more detailed account.

Inside the FCD ; in that case the kinking of the ellipse brings a part of it out its plane. This

off-plane kinked ellipse, we call it a Turtle (Fig.8). The layers rotate about
−→
t by an angle of

π; hence they become perpendicular to the plane of the ellipse, inside the FCD. Therefore

the dislocations that disperse away inside are attached to kinks that are perpendicular to

the plane of the ellipse, on average. A pair of elementary kinks (not at scale at all in the

figure), symmetric with respect to the major axis, can be linked by a unique dislocation

(Fig.8b). Our observations (Fig.8a) indicate the existence of another mode of kinking, with

screw dislocations joining the kink (of macroscopic size) to the hyperbola. There is no kink

on the hyperbola, because the two screw segments are of opposite signs, if both oriented

the same way, e.g. towards the hyperbola; they therefore induce opposite kinks. We call

such a departure from the perfect ellipse, distorted by off-plane kinks, a ’turtle’. One can

eventually imagine elementary kinks of the sort, all of the same sign, having a high density

on the ellipse and continuously tilting its plane. Such tilted ellipses have been observed in

8CB and 9CB [1]. The situation observed in Fig.8a results from the presence of a quasi

planar pretilted anchoring. A unique direction of pretilt is in conflict with the presence of

an entire ellipse parallel to the boundary in its close vicinity; hence opposite displacements

of different parts of the ellipse along the vertical direction, such that one part gets off the

boundary, and is virtual. Fig.8c illustrates a double-kinked ellipse of a turtle type observed

from the side in a thick (≈ 100µm) 8OCB sample.

We remark that both kinking modes, as depicted in Fig. 7, and 8, can be found deep in the

smectic A phase.

B. On the origin of deviations from Darboux’s theorem

The just alluded kinking processes can bring large deviations to Darboux’s law; recipro-

cally it is clear that the deviations from Darboux’s law mean a modification of the shape of

the ideal FCD conics, i.e. the presence of kinks (at the scale of the layers, since they are not

visible with the optical microscope) and of their attached dislocations. These dislocations
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necessarily disperse through the medium, outside and/or inside the FCD. Infinitesimal dis-

locations, if alone, would result, as stated above, in an extra curvature of the layers. Two

cases arise: either the deformed layers keep parallel, hence the layer normals keep straight,

and one gets eventually a new ideal FCD, or there is a deviation to straightness of the layer

normals, and consequently a layer thickness variation (this case falls within the province

of the Kroener’s dislocation densities [24]), i.e. a process of high energy if not relaxed, at

least in part, by finite edge dislocations. It suffices then to consider only those latter. The

edge components of the attached dislocations that are dispersed inside the FCD break the

parallelism of the inside layers. The congruence of the layer normals is thus no longer a set

of straight lines. This is another way of explaining the variation to Darboux’s theorem. This

could have been stated from the start: edge dislocation densities break Darboux’s theorem,

because they break the layer parallelism. But this statement comprehends deviations to Dar-

boux’s theorem that are more general than those where the focal manifolds are degenerate

to lines. The focal manifolds of a congruence of curved normals are generically 2D surfaces,

not lines. We see that the fact that these surfaces are degenerate into lines comes from

the attachment of the dislocations in question to the original focal lines. To conclude, the

occurrence of deviations to Darboux’s theorem for a set of focal lines means that the conics

are (densely) kinked and dislocations attached to those kinks.

C. The kinked (split) hyperbola

The shape of the layers is cylindrical about the central zone of the hyperbola, near its apex

(which is also the physical focus of the ellipse). But the layers are practically perpendicular

to the hyperbola at a distance from the plane of the ellipse of order a; the wedge disclination

smoothly vanishes far from the ellipse plane. In between, the layers display cusps, the lesser

pronounced the more distant from the ellipse. Hyperbolae are lines of easy coalescence of

screw dislocations, as observed long ago [25].

The presence of kinks on the hyperbola is a delicate matter; because it is a k = 1 wedge

disclination (Ω = 2π), Eq. (3) and (4) do not apply directly. A way of solving the question

is to consider that the line is made of two k =
1

2
lines, indicating that dislocations with total

Burgers vectors twice as large can attach to a kink of the same size as in the k =
1

2
case.

Another situation is worth considering. In incomplete focal domains of the type repre-
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sented Fig.9b (called fragmented domains), the hyperbola belongs to the boundary of the

domain. It is then no longer a k = 1 disclination but a k =
1

2
disclination, as if it were split

all along its length. Fragmented FCDs , noted fFCD for short, and already recognized by G.

Friedel [10], are easily obtained in a confined sample with degenerate boundary conditions.

A fFCD is bound by a segment of the ellipse and by a segment of the hyperbola, and four

fragments of cones of revolution. Thus both segments are k =
1

2
disclination line segments.

As a consequence, fFCDs are generally aligned, attached by the ends of the disclination

segments, such attachments being required by the conservation of the disclination strength.

But observe that a hyperbola H (resp. an ellipse E) can be attached indifferently either to

another H (resp. an E) or to an E (resp. a H).

One can imagine that the ellipse E1 of a FCD1 is attached to H2 of a FCD2, while

the hyperbola H1 of the FCD1 is attached to E2 of the FCD2. Such a set of line

segments attached by their extremities is topologically equivalent to a double helix.

This geometry, with sequences of the ...HEHEH... type, was observed long ago by C.

E. Williams [16] at the N−→Sm transition; it is at the origin of helical giant screw

dislocations. Fig. 10a shows an elementary fFCD having the shape of a tetrahedron;

the disclination segments are of opposite ’concavities’, which implies that the ellipse

segment is chosen close to the physical focus. Such tetrahedra are documented in [10].

Fig. 10b shows the abuting of several tetrahedra, which are no longer perfect fFCD volumes.

Let us also mention the observation, also reported in [1], of a mobile kink (several microns

long) perpendicular to the k =
1

2
hyperbola of a fFCD, moving in the direction of the

physical focus, but nucleated far from it, at a distance large compared to a. There is no

doubt that dislocations, dragged along the hyperbola, are attached to this mobile kink;

their Burgers vectors, that are perpendicular to the layers, are practically parallel to the

asymptotic direction of the hyperbola, at a distance from the ellipse plane, which indicates

that they are of screw character. This might be an indication of a mechanism by which

screw dislocations align along a (split) hyperbola.
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D. Focal Conic Domains at the Sm −→ N transition

FCDs that are immersed in the bulk (they are of the type represented Fig.9a, and gener-

ally gather into tilt boundaries) disappear rather suddenly about 0.5◦C before the transition,

by an instability mechanism that might imply a sudden multiplication of dislocations. The

spontaneous multiplication of screw dislocations close to the SmA −→ N transition is a well

documented fact in lyotropic systems [26, 27], which inclines us to believe that the phe-

nomenon of spontaneous multiplication of dislocations (screw but also edge) is very general.

The capture of free edge dislocations by the ellipse modifies its geometric features e and a,

Fig.11. Free dislocations of the same (resp. opposite) sign as the dislocations attached to

the ellipse, if captured, would increase (resp. decrease) its size (2a −→ 2a + bdisl), either

at e constant (then the asymptotic directions stay constant), or not. Boundary conditions

play a dominant role in this relaxation process. Notice that, after a possible increase in size,

the ellipses eventually always decrease in size when the temperature increases, the smallest

ellipses disappearing first. For the ellipses belonging to a tilt grain boundary, this implies

that the boundary area occupied by dislocations (the so-called residual boundary) increases

with temperature. This is in agreement with the model developed in [19], which relates the

residual boundary to the material constants; in particular a decrease of the compression

modulus B must result in an increase of the residual area.

V. CONCLUSIONS

This paper investigates from a theoretical point of view some features of the FCD

transformations that have been observed, in the smectic phase, when approaching the ne-

matic phase. These very spectacular phenomena happen in a large temperature domain

(∆T = TAN − T ∗ ≈ half a degree in 8CB, which is the chemical we used for quantitative

observations; the other compounds yield qualitatively equivalent results) in which it is be-

lieved that the variations of the material constant B are large enough to allow significant

variations of the dislocation line energy and the multiplication of fresh dislocations. At the

same time K1 and also K̄ (as we assume) do not vary in comparable proportion, so that the

energy of focal conic domains is not appreciably changed.

We have tried to discuss the general principles at the origin of these transformations
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that are due to the direct interaction between FCDs and finite Burgers vector dislocations.

There is no doubt that infinitesimally small Burgers vector dislocations are also playing a

role, in particular in the phenomena of viscous relaxation [11, 28], but this is not discussed.

The general principles that we advance are geometrical and topological in essence. The

mechanisms that obey these principles seem to be plenty, depending in particular on the

boundary conditions and the precise FCD texture. The examples we have given are few,

and are chosen for the sake of illustration.

The SmA −→ N transition is one of the most debated liquid crystal phase transitions

[3, 29, 30, 31]. This is not the place to enter into the detail of this debate, inasmuch as our

results, even if they stress the importance of defect interplays in the critical region, are not

directly related to the very proximity of the transition, which has been examined by several

authors with great accuracy (e.g. [7]).

The question that is at stake is rather why the interactions occur at temperatures defini-

tively lower than TAN and result in an instability of the FCDs. More details about the

instability will be given in a forthcoming publication.

VI. APPENDIX

We envision a curved disclination line L, carrying a rotation vector
−→
Ω constant in length

and in direction. Let P be a point on the cut surface bound by L.

We first assume that
−→
Ω is attached to some well-defined point O (Fig.12). The relative

displacement of the two lips of the cut surface at P is:

−→
d P (O) =

−→
Ω ×

−→
OP (7)

which is large on the line L if P is taken at some point M on L. Consequently in the

generic case L(0, Ω) has a very large core singularity, thus large accompanying stresses and

a large core energy. On the other hand the cut surface displacement vanishes at M if
−→
Ω is

attached to L at M , but then it does not vanish at N = M +
−−→
dM . There is still a large core

singularity along L, except at M . The Volterra process, when applied in its standard form,

does not provide a solution to the construction of a curved disclination with well relaxed

stresses.

An extended conception of the Volterra process solves the problem. Assume that there
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is a copy of the rotation vector
−→
Ω attached to all the points of L, and consider the effect of

such rotation vectors on a point P belonging to the cut surface. We have, for each other M

belonging to L, a value of the relative displacement of the lips of the cut surface which can

be written:

−→
d P (M) =

−→
Ω ×

−−→
MP (8)

Each M on L yields another value of the relative displacement at the same point P of

the cut surface, but this difficulty can be solved by the introduction of a set of infinitesimal

dislocations attached to the disclination line all along L, Fig. 13. Indeed, let M and N = M

+ dM be two infinitesimally close points on L. We have:

dP (
−→
M + d

−→
M) − dP(

−→
M) =

−→
Ω × d

−→
M (9)

which is independent of P . The quantity d
−−−→
b(M) =

−→
Ω ×

−−→
dM is the infinitesimal Burgers

vector of the infinitesimal dislocation attached to L at point M [23].

The above equations are established for a small angle of rotation vector |
−→
Ω |. In the

general case
−→
Ω has to be replaced by

1

2
sin

Ω

2

−→
t , where

−→
Ω = Ω

−→
t .
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Figure Captions

Fig.1: (Color on line) a) Complete FCD with negative Gaussian curvature Dupin cyclides,

sitting inside cylinders of revolution meeting on the ellipse. The cyclides cross the ellipse

plane at right angles; their intersections with the ellipse and the hyperbola, when they exist,

are conical points. b) Dupin cyclides fragments with positive and negative Gaussian curva-

ture, so chosen that the ellipse is still singular but the hyperbola has no physical realization.

A FCD with positive and negative Gaussian curvature both present, the hyperbola singular

and the ellipse not physically realized, is illustrated in [11].

Fig.2: (Color on line) In a ideal FCD the ellipse and the hyperbola project orthogonally

along two conics which intersect at right angles. (Photographs longer edges ≈ 200µm): a)

8OCB, between two untreated glass substrates, sample thickness (≈ 100µm), 7oC below the

transition, polarized light microscopy; Darboux’s theorem obeyed; the FCDs with parallel

hyperbola asymptotes form a tilt boundary of the type schematized in Fig.3; b) 8CB, 0.5oC

below the transition, polarized light microscopy; Darboux’s theorem disobeyed as demon-

strated in the lower photograph: the solid lines are tangents to the disclinations and the

dashed lines perpendicular to them; a very visible deviation from the Darboux’s theorem is

encircled on the upper photograph.

Fig.3: (Color on line) Tilt boundary split into FCDs. TOP: schematic, adapted from [11];

BOTTOM: 8CB, polarized light microscopy; the tilt boundary is seen edge-on; the edge of

the photograph ≈ 100µm long.

Fig.4: F, the physical focus, is the center of the (circular) intersections of the layers with

the plane of the ellipse, inside the ellipse;
−→
t is a unit vector along the local rotation vector;

the k =
1

2
disclination ellipse is of mixed (twist-wedge) character all along, except at the

ends of the major axis, where it is wedge.

Fig.5: Kink on a wedge disclination line, see text.

Fig.6: The ellipse in polar coordinates. The radius of curvature of the circle centered in

the focus F and tangent to the apex is a − c, which is smaller than the radius of curvature
b2

a
of the ellipse at the apex. This circle is thus entirely inside the ellipse. All the circles and
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the arcs of circles of the figure are centered in F. They figure intersections of the smectic

layers with the plane of the ellipse.

Fig.7: Double kinks with a dislocation outside the FCD; a)- Mouse patterns in 8CB, free

standing film, rim region; the thickness decreases downward; longer side of the photograph

≈ 200µm); b)- model.

Fig.8: Views of a double kink with a dislocation inside the FCD (longer side of pho-

tographs ≈ 200µm): a)- turtle patterns in 8CB, demonstrating that the ellipses are divided

into two parts not located at the same level, the screw dislocations attached to the kinks are

visible; b)- model of a double kink linked by a unique dislocation located inside the FCD;

c)- a double kinked ellipse (kinks are shown by arrows) of the turtle type observed from the

side (8OCB in a gap of the thickness ≈ 100µm between two untreated glass substrates).

Fig.9: (Color on line) Incomplete FCDs. a)- FCD bound by two cones of revolution

meeting on the ellipse, with apices at the terminations of the hyperbola segment; b)- A

hyperbola-split fragmented FCD (fFCD). The fFCD is bound by i) two fragments of cones

of revolution with apices at the terminations of the hyperbola segment and limited to the

ellipse segment, ii) two fragments of cones of revolution with apices at the terminations of the

ellipse segment and limited to the hyperbola segment. The director field on the boundaries

is indicated, not the cyclide intersections with these boundaries.

Fig.10: (Color on line) a)- elementary tetrahedra fFCD liable to form a portion of a

double helix due to the favourable concavities; b)- abuting of several tetrahedra.

Fig.11: Edge dislocations mobile in the plane of a perfect ellipse (belonging to a ideal

FCD) and attaching to it. The consecutive modification of the FCD results from a relaxation

process towards a new ideal FCD; this process has to respect the boundary conditions, e.g.

e = const, if the angle ω of misorientation is fixed.

Fig.12: The classic Volterra process for a rotation vector
−→
Ω attached to O. At a point P

on the cut surface, the lips of the cut surface suffer a relative displacement
−→
d P (O) =

−→
Ω×

−→
OP .

Fig.13: The extended Volterra process for a rotation vector
−→
Ω attached locally to each

point on L. Infinitesimal dislocations are attached all along the disclination line.
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