437 research outputs found

    A far-IR view of the starburst driven superwind in NGC 2146

    Get PDF
    NGC 2146, a nearby luminous infrared galaxy (LIRG), presents evidence for outflows along the disk minor axis in all gas phases (ionized, neutral atomic and molecular). We present an analysis of the multi-phase starburst driven superwind in the central 5 kpc as traced in spatially resolved spectral line observations, using far-IR Herschel PACS spectroscopy, to probe the effects on the atomic and ionized gas, and optical integral field spectroscopy to examine the ionized gas through diagnostic line ratios. We observe an increased ~250 km/s velocity dispersion in the [OI] 63 micron, [OIII] 88 micron, [NII] 122 micron and [CII] 158 micron fine-structure lines that is spatially coincident with high excitation gas above and below the disk. We model this with a slow ~200 km/s shock and trace the superwind to the edge of our field of view 2.5 kpc above the disk. We present new SOFIA 37 micron observations to explore the warm dust distribution, and detect no clear dust entrainment in the outflow. The stellar kinematics appear decoupled from the regular disk rotation seen in all gas phases, consistent with a recent merger event disrupting the system. We consider the role of the superwind in the evolution of NGC 2146 and speculate on the evolutionary future of the system. Our observations of NGC 2146 in the far-IR allow an unobscured view of the wind, crucial for tracing the superwind to the launching region at the disk center, and provide a local analog for future ALMA observations of outflows in high redshift systems.Comment: 16 pages, 13 figures, accepted for publication in Ap

    Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: NGC 628 and NGC 6946

    Get PDF
    We characterize the dust in NGC628 and NGC6946, two nearby spiral galaxies in the KINGFISH sample. With data from 3.6um to 500um, dust models are strongly constrained. Using the Draine & Li (2007) dust model, (amorphous silicate and carbonaceous grains), for each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons (PAH)s, (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the spiral structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). The overall dust/H mass ratio is estimated to be 0.0082+/-0.0017 for NGC628, and 0.0063+/-0.0009 for NGC6946, consistent with what is expected for galaxies of near-solar metallicity. Our derived dust masses are larger (by up to a factor 3) than estimates based on single-temperature modified blackbody fits. We show that the SED fits are significantly improved if the starlight intensity distribution includes a (single intensity) "delta function" component. We find no evidence for significant masses of cold dust T<12K. Discrepancies between PACS and MIPS photometry in both low and high surface brightness areas result in large uncertainties when the modeling is done at PACS resolutions, in which case SPIRE, MIPS70 and MIPS160 data cannot be used. We recommend against attempting to model dust at the angular resolution of PACS.Comment: To be published in Apj, September 2012. See the full version at http://www.astro.princeton.edu/~ganiano/Papers

    Connecting young star clusters to CO molecular gas in NGC 7793 with ALMA-LEGUS

    Get PDF
    We present an investigation of the relationship between giant molecular cloud (GMC) properties and the associated stellar clusters in the nearby flocculent galaxy NGC 7793. We combine the star cluster catalogue from the HST LEGUS (Legacy ExtraGalactic UV Survey) programme with the 15 pc resolution ALMA CO(2–1) observations. We find a strong spatial correlation between young star clusters and GMCs such that all clusters still associated with a GMC are younger than 11 Myr and display a median age of 2 Myr. The age distribution increases gradually as the cluster–GMC distance increases, with star clusters that are spatially unassociated with molecular gas exhibiting a median age of 7 Myr. Thus, star clusters are able to emerge from their natal clouds long before the time-scale required for clouds to disperse. To investigate if the hierarchy observed in the stellar components is inherited from the GMCs, we quantify the amount of clustering in the spatial distributions of the components and find that the star clusters have a fractal dimension slope of −0.35 ± 0.03, significantly more clustered than the molecular cloud hierarchy with slope of −0.18 ± 0.04 over the range 40–800 pc. We find, however, that the spatial clustering becomes comparable in strength for GMCs and star clusters with slopes of −0.44 ± 0.03 and −0.45 ± 0.06, respectively, when we compare massive (>105 M⊙) GMCs to massive and young star clusters. This shows that massive star clusters trace the same hierarchy as their parent GMCs, under the assumption that the star formation efficiency is a few per cent.Support for Program 13364 was provided by NASA through a grant from the Space Telescope Science Institute. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. This paper makes use of the following ALMA data: ADS/JAO.ALMA #2015.1.00782.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Parts of this research were supported by the Australian Research Council Centre of Excellence for All Sky Astrophysics in three Dimensions (ASTRO 3D), through project number CE170100013. AA acknowledges the support of the Swedish Research Council (Vetenskapsradet) and the Swedish National Space Board (SNSB). ˚ MF acknowledges support by the Science and Technology Facilities Council [grant number ST/P000541/1]. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 757535

    Cool Dust in the Outer Ring of NGC 1291

    Get PDF
    We examine Herschel Space Observatory images of one nearby prototypical outer ring galaxy, NGC 1291, and show that the ring becomes more prominent at wavelengths longer than 160 μm. The mass of cool dust in the ring dominates the total dust mass of the galaxy, accounting for at least 70% of it. The temperature of the emitting dust in the ring (T = 19.5 ± 0.3 K) is cooler than that of the inner galaxy (T = 25.7 ± 0.7 K). We discuss several explanations for the difference in dust temperature, including age and density differences in the stellar populations of the ring versus the bulge

    Calibrating Extinction-Free Star Formation Rate Diagnostics with 33GHz Free-Free Emission in NGC6946

    Get PDF
    Abridged: Using free-free emission measured in the Ka-band (26-40GHz) for 10 star-forming regions in the nearby galaxy NGC6946, including its starbursting nucleus, we compare a number of SFR diagnostics that are typically considered to be unaffected by interstellar extinction: i.e., non-thermal radio (i.e., 1.4GHz), total infrared (IR; 8-1000um), and warm dust (i.e., 24um) emission, along with the hybrid (obscured + unobscured) indicators of H\alpha+24um and UV+IR. The 33GHz free-free emission is assumed to provide the most accurate measure of the current SFR. Among the extranuclear star-forming regions, the 24um, H\alpha+24um and UV+IR SFR calibrations are in good agreement with the 33GHz free-free SFRs. However, each of the SFR calibrations relying on some form of dust emission overestimate the nuclear SFR by a factor of ~2. This is more likely the result of excess dust heating through an accumulation of non-ionizing stars associated with an extended episode of star formation in the nucleus rather than increased competition for ionizing photons by dust. SFR calibrations using the non-thermal radio continuum yield values which only agree with the free-free SFRs for the nucleus, and underestimate the SFRs from the extranuclear star-forming regions by a factor of ~2. This result likely arises from the CR electrons decaying within the starburst region with negligible escape compared to the young extranuclear star-forming regions. Finally, we find that the SFRs estimated using the total 33GHz emission agree well with the free-free SFRs due to the large thermal fractions present at these frequencies even when local diffuse backgrounds are not removed. Thus, rest-frame 33GHz observations may act as a reliable method to measure the SFRs of galaxies at increasingly high redshift without the need of ancillary radio data to account for the non-thermal emission.Comment: 18 pages, 7 Figures, Accepted for publication in Ap

    Resolving Giant Molecular Clouds in NGC 300: : A First Look with the Submillimeter Array

    Get PDF
    Christopher M. Faesi, et al, 'RESOLVING GIANT MOLECULAR CLOUDS IN NGC 300: A FIRST LOOK WITH THE SUBMILLIMETER ARRAY', The Astrophysical Journal, Vol. 821(2) (16 pp), April 2016. doi:10.3847/0004-637X/821/2/125. © 2016. The American Astronomical Society. All rights reserved.We present the first high angular resolution study of giant molecular clouds (GMCs) in the nearby spiral galaxy NGC 300, based on observations from the Submillimeter Array (SMA). We target eleven 500 pc-sized regions of active star formation within the galaxy in the CO(J=2-1) line at 40 pc spatial and 1 km/s spectral resolution and identify 45 individual GMCs. We characterize the physical properties of these GMCs, and find that they are similar to GMCs in the disks of the Milky Way and other nearby spiral galaxies. For example, the GMC mass spectrum in our sample has a slope of 1.80+/-0.07. Twelve clouds are spatially resolved by our observations, of which ten have virial mass estimates that agree to within a factor of two with mass estimates derived directly from CO integrated intensity, suggesting that the majority of these GMCs are bound. The resolved clouds show consistency with Larson's fundamental relations between size, linewidth, and mass observed in the Milky Way. We find that the linewidth scales with the size as DeltaV ~ R^(0.52+/-0.20), and the median surface density in the subsample is 54 Msun/pc^(-2). We detect 13CO in four GMCs and find a mean 12CO/13CO flux ratio of 6.2. Our interferometric observations recover between 30% and 100% of the integrated intensity from the APEX single dish CO observations of Faesi et al. 2014, suggesting the presence of low-mass GMCs and/or diffuse gas below our sensitivity limit. The fraction of APEX emission recovered increases with the SMA total intensity as well as with the star formation rate.Peer reviewe

    Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA

    Full text link
    Events with a (2+1) jet topology in deep-inelastic scattering at HERA are studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet events has been determined with the modified JADE jet algorithm as a function of the jet resolution parameter and is compared with the predictions of Monte Carlo models. In addition, the event rate is corrected for both hadronization and detector effects and is compared with next-to-leading order QCD calculations. A value of the strong coupling constant of alpha_s(M_Z^2)= 0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is extracted. The systematic error includes uncertainties in the calorimeter energy calibration, in the description of the data by current Monte Carlo models, and in the knowledge of the parton densities. The theoretical error is dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.

    Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant

    Get PDF
    Jet event rates in deep inelastic ep scattering at HERA are investigated applying the modified JADE jet algorithm. The analysis uses data taken with the H1 detector in 1994 and 1995. The data are corrected for detector and hadronization effects and then compared with perturbative QCD predictions using next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2) is determined evaluating the jet event rates. Values of alpha_S(Q^2) are extracted in four different bins of the negative squared momentum transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the renormalization group equation to these several alpha_S(Q^2) values results in alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys. J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4

    Multiplicity Structure of the Hadronic Final State in Diffractive Deep-Inelastic Scattering at HERA

    Get PDF
    The multiplicity structure of the hadronic system X produced in deep-inelastic processes at HERA of the type ep -> eXY, where Y is a hadronic system with mass M_Y< 1.6 GeV and where the squared momentum transfer at the pY vertex, t, is limited to |t|<1 GeV^2, is studied as a function of the invariant mass M_X of the system X. Results are presented on multiplicity distributions and multiplicity moments, rapidity spectra and forward-backward correlations in the centre-of-mass system of X. The data are compared to results in e+e- annihilation, fixed-target lepton-nucleon collisions, hadro-produced diffractive final states and to non-diffractive hadron-hadron collisions. The comparison suggests a production mechanism of virtual photon dissociation which involves a mixture of partonic states and a significant gluon content. The data are well described by a model, based on a QCD-Regge analysis of the diffractive structure function, which assumes a large hard gluonic component of the colourless exchange at low Q^2. A model with soft colour interactions is also successful.Comment: 22 pages, 4 figures, submitted to Eur. Phys. J., error in first submission - omitted bibliograph
    corecore