2,686 research outputs found

    Detecting Photon-Photon Interactions in a Superconducting Circuit

    Full text link
    A local interaction between photons can be engineered by coupling a nonlinear system to a transmission line. The required high impedance transmission line can be conveniently formed from a chain of Josephson junctions. The nonlinearity is generated by side-coupling this chain to a Cooper pair box. We propose to probe the resulting photon-photon interactions via their effect on the current-voltage characteristic of a voltage-biased Josephson junction connected to the transmission line. Considering the Cooper pair box to be in the weakly anharmonic regime, we find that the dc current through the probe junction yields features around the voltages 2eV=nℏωs2eV=n\hbar\omega_s, where ωs\omega_s is the plasma frequency of the superconducting circuit. The features at n≄2n\ge 2 are a direct signature of the photon-photon interaction in the system.Comment: 10 pages, 7 figure

    Investigation of the Rearrangement of Reactive–Inert Particulate Structures in a Single Channel of a Wall-Flow Filter

    Get PDF
    Wall-flow filters are a standard component in exhaust gas aftertreatment and have become indispensable in vehicles. Ash and soot particles generated during engine combustion are deposited in diesel or gasoline particulate filters. During regeneration, the soot particles are oxidized. The remaining ash particles can form different deposition patterns: a homogenous layer or plug-end filling. It has not yet been clarified whether the plug-end filling is first formed by rearrangements of agglomerates before and during the regeneration of the reactive particles. In this study, experiments are carried out with a single channel of a wall-flow filter. For the investigations, a layer of inert and reactive particles is formed. The rearrangement of agglomerates is achieved by flowing through the model filter channel and observed with a high-speed camera. The particulate structures detach at the channel inlet, are transported along the channel and deposited at the plug. The velocity of the detached agglomerates depends on their size, shape, track and the gas velocity in the channel. If the agglomerate is near the walls of the model filter channel, the gas velocity deviates from the gas velocity in the core flow. The higher the gas velocity, the higher the agglomerate velocity achieved and the larger the detached agglomerates

    Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae

    Get PDF
    Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (EGSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. EGSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H+/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions

    CHILES: HI morphology and galaxy environment at z=0.12 and z=0.17

    Get PDF
    We present a study of 16 HI-detected galaxies found in 178 hours of observations from Epoch 1 of the COSMOS HI Large Extragalactic Survey (CHILES). We focus on two redshift ranges between 0.108 <= z <= 0.127 and 0.162 <= z <= 0.183 which are among the worst affected by radio frequency interference (RFI). While this represents only 10% of the total frequency coverage and 18% of the total expected time on source compared to what will be the full CHILES survey, we demonstrate that our data reduction pipeline recovers high quality data even in regions severely impacted by RFI. We report on our in-depth testing of an automated spectral line source finder to produce HI total intensity maps which we present side-by-side with significance maps to evaluate the reliability of the morphology recovered by the source finder. We recommend that this become a common place manner of presenting data from upcoming HI surveys of resolved objects. We use the COSMOS 20k group catalogue, and we extract filamentary structure using the topological DisPerSE algorithm to evaluate the \hi\ morphology in the context of both local and large-scale environments and we discuss the shortcomings of both methods. Many of the detections show disturbed HI morphologies suggesting they have undergone a recent interaction which is not evident from deep optical imaging alone. Overall, the sample showcases the broad range of ways in which galaxies interact with their environment. This is a first look at the population of galaxies and their local and large-scale environments observed in HI by CHILES at redshifts beyond the z=0.1 Universe.Comment: 23 pages, 12 figures, 1 interactive 3D figure, accepted to MNRA

    Facilitating Pedagogies of Possibility in Teacher Education: Experiences of Faculty Members in a Self-Study Learning Group

    Get PDF
    This collaborative self-study explores how seven members of a Faculty Self-Study Learning Group (FS-SLG) attempt to foster cultures of inquiry with teacher candidates. In so doing, we simultaneously describe a professional learning community of teacher educators engaging in reflective practice via the teaching, learning, and enacting of self-study methodology. Findings from this collaborative self-study highlight how we attempt to translate our own efforts to be more purposeful and reflective into our teacher education practice through modeling, as well as the tensions we felt in promoting a view of teaching as a process of critical inquiry. The discussion focuses on lessons learned and potential ways forward for educators who similarly desire to embrace inquiry-based pedagogies of possibility within the existing landscape of teaching and teacher preparation

    Comparison of two pore sizes of LAE442 scaffolds and their effect on degradation and osseointegration behavior in the rabbit model

    Get PDF
    The magnesium alloy LAE442 emerged as a possible bioresorbable bone substitute over a decade ago. In the present study, using the investment casting process, scaffolds of the Magnesium (Mg) alloy LAE442 with two different and defined pore sizes, which had on average a diameter of 400 Όm (p400) and 500 Όm (p500), were investigated to evaluate degradation and osseointegration in comparison to a ß‐TCP control group. Open‐pored scaffolds were implanted in both greater trochanter of rabbits. Ten scaffolds per time group (6, 12, 24, and 36 weeks) and type were analyzed by clinical, radiographic and Ό‐CT examinations (2D and 3D). None of the scaffolds caused adverse reactions. LAE442 p400 and p500 developed moderate gas accumulation due to the Mg associated in vivo corrosion, which decreased from week 20 for both pore sizes. After 36 weeks, p400 and p500 showed volume decreases of 15.9 and 11.1%, respectively, with homogeneous degradation, whereas ß‐TCP lost 74.6% of its initial volume. Compared to p400, osseointegration for p500 was significantly better at week 2 postsurgery due to more frequent bone‐scaffold contacts, higher number of trabeculae and higher bone volume in the surrounding area. No further significant differences between the two pore sizes became apparent. However, p500 was close to the values of ß‐TCP in terms of bone volume and trabecular number in the scaffold environment, suggesting better osseointegration for the larger pore size

    Dynamic, adaptive changes in MAO-A binding after alterations in substrate availability: an in vivo [11C]-harmine positron emission tomography study

    Get PDF
    Monoamine oxidase A (MAO-A) is an important target in the pathophysiology and therapeutics of major depressive disorder, aggression, and neurodegenerative conditions. We measured the effect of changes in MAO-A substrate on MAO-A binding in regions implicated in affective and neurodegenerative disease with [11C]-harmine positron emission tomography in healthy volunteers. Monoamine oxidase A VT, an index of MAO-A density, was decreased (mean: 14%±9%) following tryptophan depletion in prefrontal cortex (P<0.031), and elevated (mean: 17%±11%) in striatum following carbidopa–levodopa administration (P<0.007). These findings suggest an adaptive role for MAO-A in maintaining monoamine neurotransmitter homeostasis by rapidly compensating fluctuating monoamine levels

    Magnetotunneling spectroscopy of mesoscopic correlations in two-dimensional electron systems

    Full text link
    An approach to experimentally exploring electronic correlation functions in mesoscopic regimes is proposed. The idea is to monitor the mesoscopic fluctuations of a tunneling current flowing between the two layers of a semiconductor double-quantum-well structure. From the dependence of these fluctuations on external parameters, such as in-plane or perpendicular magnetic fields, external bias voltages, etc., the temporal and spatial dependence of various prominent correlation functions of mesoscopic physics can be determined. Due to the absence of spatially localized external probes, the method provides a way to explore the interplay of interaction and localization effects in two-dimensional systems within a relatively unperturbed environment. We describe the theoretical background of the approach and quantitatively discuss the behavior of the current fluctuations in diffusive and ergodic regimes. The influence of both various interaction mechanisms and localization effects on the current is discussed. Finally a proposal is made on how, at least in principle, the method may be used to experimentally determine the relevant critical exponents of localization-delocalization transitions.Comment: 15 pages, 3 figures include

    Cosmopolitan conservation: the multi-scalar contributions of urban green infrastructure to biodiversity protection [Letter]

    Get PDF
    Urbanization is a leading cause of biodiversity loss globally. Expanding cities alter regional ecological processes by consuming habitat and modifying biogeochemical and energetic flows. Densifying cities often lose valuable intra-urban green spaces. Despite these negative impacts, novel urban ecosystems can harbor high biodiversity and provide vital ecosystem services for urban residents. Recognizing the benefits of urban ecosystems, cities across the globe are increasingly planning for urban green infrastructure (UGI). UGI as a planning concept can transform how cities integrate biodiversity into urbanized landscapes at multiple scales and contribute to conservation goals. Full operationalization of UGI concepts can also reduce urban energy and resource demands via substituting polluting technologies by UGI, further contributing to the global conservation agenda. Realizing the potential contributions of UGI to local, regional, and global conservation goals requires addressing four inter-dependent challenges: (1) expanding social-ecological-systems thinking to include connections between complex social, ecological, and technological systems (SETS), (2) explicitly addressing multi-level governance challenges, (3) adapting SETS approaches to understand the contextual and biocultural factors shaping relationships between UGI and other causal processes in cities that shape biodiversity, and (4) operationalizing UGI systems through robust modeling and design approaches. By transforming UGI policy and research through SETS approaches to explicitly integrate biodiversity we can support global conservation challenges while improving human wellbeing in cities and beyond
    • 

    corecore