148 research outputs found

    On the study of catalytic membrane reactor for water detritiation: Membrane characterization.

    Get PDF
    Tritium waste recycling is a real economic and ecological issue. Generally under the non-valuable Q2Oform (Q = H, D or T), waste can be converted into fuel Q2for a fusion machine (e.g. JET, ITER) by isotopeexchange reaction Q2O + H2= H2O + Q2. Such a reaction is carried out over Ni-based catalyst bed packed ina thin wall hydrogen permselective membrane tube. This catalytic membrane reactor can achieve higherconversion ratios than conventional fixed bed reactors by selective removal of reaction product Q2bythe membrane according to Le Chatelier’s Law. This paper presents some preliminary permeation tests performed on a catalytic membrane reactor.Permeabilities of pure hydrogen and deuterium as well as those of binary mixtures of hydrogen, deu-terium and nitrogen have been estimated by measuring permeation fluxes at temperatures ranging from573 to 673 K, and pressure differences up to 1.5 bar. Pure component global fluxes were linked to perme-ation coefficient by means of Sieverts’ law. The thin membrane (150 �m), made of Pd–Ag alloy (23 wt.%Ag),showed good permeability and infinite selectivity toward protium and deuterium. Lower permeabilityvalues were obtained with mixtures containing non permeable gases highlighting the existence of gasphase resistance. The sensitivity of this concentration polarization phenomenon to the composition andthe flow rate of the inlet was evaluated and fitted by a two-dimensional model

    In situ investigation of the bainitic transformation from deformed austenite during continuous cooling in a low carbon Mn-Si-Cr-Mo steel

    Get PDF
    The effects of hot deformation on the bainitic transformation of a low carbon steel during continuous cooling were comprehensively studied through in situ high-energy synchrotron X-ray diffraction, dilatometry, and ex situ microstructural characterizations. The obtained results indicated that the prior deformation of austenite at 950 C accelerates the bainite formation at the early stages. During the ongoing of the transformation, both the overall kinetics of bainite and carbon enrichment of austenite are lower in deformed austenite. The bainitic microstructure developed from deformed austenite is more refined and presents the same retained austenite content at room temperature with slightly lower carbon content when compared with the undeformed sample. Besides, a significant higher dilatation strain was measured during the bainitic transformation in the deformed sample, which can be explained by the crystallographic texture in hot deformed austenite. The evolution of the peak broadening of the {220}c and {211}a reflections during bainitic transformation are discussed in detail

    Diabetogenic milieus induce specific changes in mitochondrial transcriptome and differentiation of human pancreatic islets

    Get PDF
    In pancreatic β-cells, mitochondria play a central role in coupling glucose metabolism to insulin secretion. Chronic exposure of β-cells to metabolic stresses impairs their function and potentially induces apoptosis. Little is known on mitochondrial adaptation to metabolic stresses, i.e. high glucose, fatty acids or oxidative stress; being all highlighted in the pathogenesis of type 2 diabetes. Here, human islets were exposed for 3 days to 25 mm glucose, 0.4 mm palmitate, 0.4 mm oleate and transiently to H2O2. Culture at physiological 5.6 mm glucose served as no-stress control. Expression of mitochondrion-associated genes was quantified, including the transcriptome of mitochondrial inner membrane carriers. Targets of interest were further evaluated at the protein level. Three days after acute oxidative stress, no significant alteration in β-cell function or apoptosis was detected in human islets. Palmitate specifically increased expression of the pyruvate carriers MPC1 and MPC2, whereas the glutamate carrier GC1 and the aspartate/glutamate carrier AGC1 were down-regulated by palmitate and oleate, respectively. High glucose decreased mRNA levels of key transcription factors (HNF4A, IPF1, PPARA and TFAM) and energy-sensor SIRT1. High glucose also reduced expression of 11 mtDNA-encoded respiratory chain subunits. Interestingly, transcript levels of the carriers for aspartate/glutamate AGC2, malate DIC and malate/oxaloacetate/aspartate UCP2 were increased by high glucose, a profile suggesting important mitochondrial anaplerotic/cataplerotic activities and NADPH-generating shuttles. Chronic exposure to high glucose impaired glucose-stimulated insulin secretion, decreased insulin content, promoted caspase-3 cleavage and cell death, revealing glucotoxicity. Overall, expression profile of mitochondrion-associated genes was selectively modified by glucose, delineating a glucotoxic-specific signatur

    Detailed identification and quantification of the condensable species released during torrefaction of lignocellulosic biomasses

    Get PDF
    Torrefaction is a mild thermal pretreatment which improves biomass properties and releases condensable species. Condensable species released during torrefaction of pine, ash wood, miscanthus and wheat straw at 250, 280 and 300 °C were investigated. A fixed-bed reactor was used for the laboratory scale experiments. A micro-GC, Karl Fischer titrator and GC-MS were used to analyse incondensable gases, water and other condensable species, respectively. The overall mass balance ranged from 96 to 103 wt.%. The quantification rate of condensable species was on average 77 wt.%. In addition to the major species usually reported in the literature – water, acetic acid, 2-propanone,1-hydroxy- – we show that large amounts of some anhydrosugars were produced. Additionally, 85 condensable species were identified. Among these species, many terpenes and terpenoids in pine were identified by adsorption on SPME fibre. Finally, the influence of temperature and of the nature of biomass on the yields of condensable species was highlighted

    On the study of catalytic membrane reactor for water detritiation: Modeling approach

    Get PDF
    In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q2 form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reaction

    Politicians lie, so do I

    Get PDF
    This research analyzed whether political leaders make people lie via priming experiments. Priming is a non-conscious and implicit memory effect in which exposure to one stimulus affects the response to another stimulus. Following priming theories, we proposed an innovative concept that people who perceive leaders to be dishonest (such as liar) are likely to lie themselves. We designed three experiments to analyze and critically discussed the potential influence of prime effect on lying behavior, through the prime effect of French political leaders (inc. general politicians, presidents and parties). Experiment 1 discovered that participants with non-politician-prime were less likely to lie (compared to politician-prime). Experiment 2A discovered that, compared to Hollande-prime, Sarkozy-prime led to lying behavior both in gravity (i.e. bigger lies) and frequency (i.e. lying more frequently). Experiment 2B discovered that Republicans-prime yielded an impact on more lying behavior, and Sarkozy-prime made such impact even stronger. Overall, the research findings suggest that lying can be triggered by external influencers such as leaders, presidents and politicians in the organizations. Our findings have provided valuable insights to organizational leaders and managers in their personnel management practice, especially in the intervention of lying behavior. Our findings also have offered new insights to explain non-conscious lying behavior

    Opportunities for Gas-Phase Science at Short-Wavelength Free-Electron Lasers with Undulator-Based Polarization Control

    Full text link
    Free-electron lasers (FELs) are the world's most brilliant light sources with rapidly evolving technological capabilities in terms of ultrabright and ultrashort pulses over a large range of accessible photon energies. Their revolutionary and innovative developments have opened new fields of science regarding nonlinear light-matter interaction, the investigation of ultrafast processes from specific observer sites, and approaches to imaging matter with atomic resolution. A core aspect of FEL science is the study of isolated and prototypical systems in the gas phase with the possibility of addressing well-defined electronic transitions or particular atomic sites in molecules. Notably for polarization-controlled short-wavelength FELs, the gas phase offers new avenues for investigations of nonlinear and ultrafast phenomena in spin orientated systems, for decoding the function of the chiral building blocks of life as well as steering reactions and particle emission dynamics in otherwise inaccessible ways. This roadmap comprises descriptions of technological capabilities of facilities worldwide, innovative diagnostics and instrumentation, as well as recent scientific highlights, novel methodology and mathematical modeling. The experimental and theoretical landscape of using polarization controllable FELs for dichroic light-matter interaction in the gas phase will be discussed and comprehensively outlined to stimulate and strengthen global collaborative efforts of all disciplines

    The impact of vector migration on the effectiveness of strategies to control gambiense human African trypanosomiasis

    Get PDF
    BACKGROUND: Several modeling studies have been undertaken to assess the feasibility of the WHO goal of eliminating gambiense human African trypanosomiasis (g-HAT) by 2030. However, these studies have generally overlooked the effect of vector migration on disease transmission and control. Here, we evaluated the impact of vector migration on the feasibility of interrupting transmission in different g-HAT foci. METHODS: We developed a g-HAT transmission model of a single tsetse population cluster that accounts for migration of tsetse fly into this population. We used a model calibration approach to constrain g-HAT incidence to ranges expected for high, moderate and low transmission settings, respectively. We used the model to evaluate the effectiveness of current intervention measures, including medical intervention through enhanced screening and treatment, and vector control, for interrupting g-HAT transmission in disease foci under each transmission setting. RESULTS: We showed that, in low transmission settings, under enhanced medical intervention alone, at least 70% treatment coverage is needed to interrupt g-HAT transmission within 10 years. In moderate transmission settings, a combination of medical intervention and a vector control measure with a daily tsetse mortality greater than 0.03 is required to achieve interruption of disease transmission within 10 years. In high transmission settings, interruption of disease transmission within 10 years requires a combination of at least 70% medical intervention coverage and at least 0.05 tsetse daily mortality rate from vector control. However, the probability of achieving elimination in high transmission settings decreases with an increased tsetse migration rate. CONCLUSION: Our results suggest that the WHO 2030 goal of G-HAT elimination is, at least in theory, achievable. But the presence of tsetse migration may reduce the probability of interrupting g-HAT transmission in moderate and high transmission foci. Therefore, optimal vector control programs should incorporate monitoring and controlling of vector density in buffer areas around foci of g-HAT control efforts
    corecore