49,040 research outputs found

    Impact of Electrostatic Forces in Contact Mode Scanning Force Microscopy

    Full text link
    In this \ll contribution we address the question to what extent surface charges affect contact-mode scanning force microscopy measurements. % We therefore designed samples where we could generate localized electric field distributions near the surface as and when required. % We performed a series of experiments where we varied the load of the tip, the stiffness of the cantilever and the hardness of the sample surface. % It turned out that only for soft cantilevers could an electrostatic interaction between tip and surface charges be detected, irrespective of the surface properties, i.\,e. basically regardless its hardness. % We explain these results through a model based on the alteration of the tip-sample potential by the additional electric field between charged tip and surface charges

    Two-temperature coronal flow above a thin disk

    Full text link
    We extended the disk corona model (Meyer & Meyer-Hofmeister 1994; Meyer, Liu, & Meyer-Hofmeister 2000a) to the inner region of galactic nuclei by including different temperatures in ions and electrons as well as Compton cooling. We found that the mass evaporation rate and hence the fraction of accretion energy released in the corona depend strongly on the rate of incoming mass flow from outer edge of the disk, a larger rate leading to more Compton cooling, less efficient evaporation and a weaker corona. We also found a strong dependence on the viscosity, higher viscosity leading to an enhanced mass flow in the corona and therefore more evaporation of gas from the disk below. If we take accretion rates in units of the Eddington rate our results become independent on the mass of the central black hole. The model predicts weaker contributions to the hard X-rays for objects with higher accretion rate like narrow-line Seyfert 1 galaxies (NLS1s), in agreement with observations. For luminous active galactic nuclei (AGN) strong Compton cooling in the innermost corona is so efficient that a large amount of additional heating is required to maintain the corona above the thin disk.Comment: 17 pages, 6 figures. ApJ accepte

    Unified constitutive model for single crystal deformation behavior with applications

    Get PDF
    Single crystal materials are being used in gas turbine airfoils and are candidates for other hot section components because of their increased temperature capabilities and resistance to thermal fatigue. Development of a constitutive model which assesses the inelastic behavior of these materials has been studied in 2 NASA programs: Life Prediction and Constitutive Models for Engine Hot Section Anisotropic Materials and Biaxial Constitutive Equation Development for Single Crystals. The model has been fit to a large body of constitutive data for single crystal PWA 1480 material. The model uses a unified approach for computing total inelastic strains (creep plus plasticity) on crystallographic slip systems reproducing observed directional and strain rate effects as a natural consequence of the summed slip system quantities. The model includes several of the effects that have been reported to influence deformation in single crystal materials, such as shear stress, latent hardening, and cross slip. The model is operational in a commercial Finite Element code and is being installed in a Boundary Element Method code

    Properties of Intercalated 2H-NbSe2, 4Hb-TaS2 and 1T-TaS2

    Get PDF
    The layered compounds 2H-NbSe, 24Hb-TaS, 2and 1T-TaS2 have been intercalated with organic molecules; and the resulting crystal structure, heat capacity, conductivity, and superconductivity have been studied. The coordination in the disulfide layers was found to be unchanged in the product phase. Resistance minima appear and the superconducting transition temperature is reduced in the NbSe2 complex. Conversely, superconductivity is induced in the 4Hb-TaS2 complex. Corresponding evidence of a large change of the density of states, negative for 2H-NbSe2 and positive for 4Hb-TaS2, was also observed upon intercalation. The transport properties of all the intercalation complexes show a pronounced dependence upon the coordination of the transition metal

    Binding between two-component bosons in one dimension

    Full text link
    We investigate the ground state of one-dimensional few-atom Bose-Bose mixtures under harmonic confinement throughout the crossover from weak to strong inter-species attraction. The calculations are based on the numerically exact multi-configurational time-dependent Hartree method. For repulsive components we detail the condition for the formation of a molecular Tonks-Girardeau gas in the regime of intermediate inter-species interactions, and the formation of a molecular condensate for stronger coupling. Beyond a critical inter-species attraction, the system collapses to an overall bound state. Different pathways emerge for unequal particle numbers and intra-species interactions. In particular, for mixtures with one attractive component, this species can be viewed as an effective potential dimple in the trap center for the other, repulsive component.Comment: 10 pages, 10 figure

    Why Customers Value Mass-customized Products: The Importance of Process Effort and Enjoyment

    Get PDF
    We test our hypotheses on 186 participants designing their own scarves with an MC toolkit. After completing the process, they submitted binding bids for "their" products in Vickrey auctions. We therefore observe real buying behavior, not merely stated intentions. We find that the subjective value of a self-designed product (i.e., one's bid in the course of the auction) is indeed not only impacted by the preference fit the customer expects it to deliver, but also by (1) the process enjoyment the customer reports, (2) the interaction of preference fit and process enjoyment, and (3) the interaction of preference fit and perceived process effort. In addition to its main effect, we interpret preference fit as a moderator of the valuegenerating effect of process evaluation: In cases where the outcome of the process is perceived as positive (high preference fit), the customer also interprets process effort as a positive accomplishment, and this positive affect adds (further) value to the product. It appears that the perception of the self-design process as a good or bad experience is partly constructed on the basis of the outcome of the process. In the opposite case (low preference fit), effort creates a negative affect which further reduces the subjective value of the product. Likewise, process enjoyment is amplified by preference fit, although enjoyment also has a significant main effect, which means that regardless of the outcome, customers attribute higher value to a self-designed product if they enjoy the process. The importance of the self-design process found in this study bears clear relevance for companies which offer or plan to offer MC systems. It is not sufficient to design MC toolkits in such a way that they allow customers to design products according to their preferences. The affect caused by this process is also highly important. Toolkits should therefore stimulate positive affective reactions and at the same time keep negative affect to a minimum. (authors' abstract

    Quantum entanglement distribution with 810 nm photons through telecom fibers

    Full text link
    We demonstrate the distribution of polarization entangled photons of wavelength 810 nm through standard telecom fibers. This technique allows quantum communication protocols to be performed over established fiber infrastructure, and makes use of the smaller and better performing setups available around 800 nm, as compared to those which use telecom wavelengths around 1550 nm. We examine the excitation and subsequent quenching of higher-order spatial modes in telecom fibers up to 6 km in length, and perform a distribution of high quality entanglement (visibility 95.6%). Finally, we demonstrate quantum key distribution using entangled 810 nm photons over a 4.4 km long installed telecom fiber link.Comment: 5 pages, 5 figures, 1 tabl

    Random Matrix Theory, Chiral Perturbation Theory, and Lattice Data

    Get PDF
    Recently, the chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that the deviations of lattice results from random matrix theory starting around the so-called Thouless energy can be understood in terms of chiral perturbation theory as well. Comparison of lattice data with chiral perturbation theory formulae allows us to compute the pion decay constant. We present results from a calculation for quenched SU(2) with Kogut-Susskind fermions at \beta=2.0 and 2.2.Comment: LaTeX, 12 pages, 7 .eps figure
    corecore