1,339 research outputs found

    Intracellular signaling cascades in the dopaminergic specification of fetal mesencephalic neural progenitor cells.

    Get PDF
    Neural stem (progenitor) cells (NPCs) from fetal tissue are an ideal transplantable cell source. They divide rapidly, are able to generate cells of all three neural lineages and do not divide uncontrolled once transplanted into a host organism. To obtain large quantities of cells for transplantation strategies and to eliminate primary cell contaminations, long periods of in vitro cultivation are necessary. Mouse NPCs are a crucial tool for further investigations of neural stem cells because they make the employment of transgenic animals in vivo and cells in vitro possible. So far only short-term expanded fetal mouse NPCs have been shown to generate dopaminergic neurons and it is not clear whether this was due to differentiation or a result of increased survival of primary dopaminergic neurons. The aims of the thesis were to characterize mouse fetal NPCs, to establish the long-term expansion of fetal mouse NPCs and the generation of dopaminergic neurons in long-term expanded fetal mouse NPCs, to investigate the signaling mechanisms involved in the differentiation of mouse fetal NPCs towards the dopaminergic phenotype and to compare short and long-term expanded NPCs. Long-term expanded fetal mesencephalic NPCs could be grown under suspension and adherent culture conditions and showed self- renewing capacity as well as markers typical for NPCs. They could be differentiated into the three major cell types of the nervous system, but suspension NPCs had a larger potential to generate neurons than adherently grown NPCs. Signaling cascades involved in this process were p38 and Erk1/2 mediated. Long-term expanded NPCs did not have the potential to generate neuronal sub-types. Importantly, they did not generate dopaminergic neurons. Mouse fetal NPCs from three different developmental stages (E10, E12, and E14) were employed but were not able to differentiate into dopaminergic neurons using factors known to stimulate in vitro dopaminergic specification. When cultivated in vitro for short periods, fetal mesencephalic NPCs were able to generate dopaminergic neurons. By eliminating all primary Th- positive neurons, FACS-sorting of NPCs proved a de novo generation of dopaminergic neurons, because after cultivation and differentiation of Th- depleted cell solutions dopaminergic neurons were present in the culture. However, these newly generated neurons failed to incorporate BrdU, making a generation without cell division from precursors probable. The precursor population of short cultures differed from long-term expanded cultures suggesting an ‘aging’ effect of in vitro conditions. IL-1 was a potent inducer of the dopaminergic neuronal phenotype in short-term expanded in vitro cultures and was expressed in vitro as well as in vivo at E14. Several important conclusions concerning fetal mouse stem cell behavior could be drawn from the results of this work: Firstly, the results showed for the first time that in fetal mouse mesencephalic NPCs dopaminergic neurons differentiate from precursors without cell division, therefore consuming those progenitors. Therein fetal mouse NPCs differ significantly from rat and human NPCs or respond differently to the same in vitro conditions that need to be optimized for fetal mouse NPCs. Secondly, less committed precursors find appropriate conditions to proliferate but not to generate the more committed DA precursors that are able to generate dopaminergic neurons. The hallmarks of stem cells, self-renewal and multipotentiality, seem to be part of a delicate balance, that, when unsettled, goes in favor of one side without the possibility of returning to the previous status. Further research should focus on two coherent issues: the isolation of more pure populations of progenitors and the more precise characterization of progenitor populations to find out which in vitro conditions need to be provided to keep the balance between proliferation and differentiation potential. The knowledge gained about stem cells this way would help establish cell sources for transplantation strategies.Stammzellen sind ein wichtiges Werkzeug fĂŒr regenerative Therapien im Bereich der neurodegenerativen Erkrankungen wie der Parkinson’schen Erkrankung. Ein besonderer Vorteil von Stammzellen gegenĂŒber dem bereits zur Transplantation verwendeten PrimĂ€rgewebe, ist ihre FĂ€higkeit zur fortlaufenden Zellteilung, so dass ausreichende Mengen zur Transplantation zur VerfĂŒgung stehen. Der Vorteil von fetalen neuralen Stammzellen (fNSZ) ist ihre genomische StabilitĂ€t, die dazu fĂŒhrt, dass bei Transplantationen keine Tumore entstehen. Dennoch ist der Großteil ihrer Eigenschaften und Potentiale noch unbekannt und die optimalen Wachstumsbedingungen fĂŒr eine lange in vitro Kultur und optimale Differenzierung in dopaminerge Neuronen mĂŒssen erforscht werden, um bessere Transplantate herzustellen. Insbesondere Stammzellen der Maus sind fĂŒr die Forschung von immenser Wichtigkeit, da sie die Arbeit mit transgenen Tieren ermöglichen. Die Zielsetzungen dieser Arbeit waren die Charakterisierung der fNSZ der Maus, die Langzeitexpansion und die anschließende Differenzierung in dopaminerge Neurone. Die Signalkaskaden der frĂŒhen Differenzierung und die Unterschiede von kurz- und langzeitkultivierten Stammzellen wurden untersucht. Es konnte gezeigt werden, dass fNSZ der Maus nach Langzeitkultivierung in alle Zelltypen des zentralen Nervensystems, also Neuronen und Glia differenzieren und die dabei aktivierten Signalkaskaden p38 und Erk1/2 vermittelt sind. Das Differenzierungspotential zu neuronalen Subtypen (also auch zu dopaminergen Nervenzellen) verloren diese fetalen Stammzellen unter Kulturbedingungen schnell. Das steht im Gegensatz zu fetalen Stammzellen aus Ratte oder dem Menschen, die auch nach langer Kultivierung ihr dopaminerge Potential erhalten. Nur nach Kurzzeitkultivierung waren dopaminerge Neurone nachzuweisen, die jedoch nicht durch Zellteilung aus VorlĂ€uferzellen hervorgegangen waren. Die Eliminierung aller primĂ€ren Neurone aus der Mittelhirnisolation durch FACS-sorting von Th-Gfp transgenen MĂ€usen bewies die de novo Generation der dopaminergen Neurone aus VorlĂ€uferzellen ohne Zellteilung wĂ€hrend der Kultivierung der Stammzellen. Diese Ergebnisse zeigten, dass in fetalen mesenzephalen NSZ der Maus dopaminerge Neurone von spezialisierten VorlĂ€uferzellen differenzieren, wodurch diese der Kultur verloren gehen. Weniger spezialisierte VorlĂ€uferzellen finden Bedingungen, die ihre Kultivierung ermöglichen, sind aber nicht in der Lage, spezifischere VorlĂ€uferzellen zu bilden. Die Markenzeichen von Stammzellen, Selbsterneuerung (durch Zellteilung) und das Potential, die Zelltypen des Nervensystems zu generieren, scheinen fein balancierte ZustĂ€nde zu sein, die bei einer Störung nicht wiederherzustellen sind. Die Ergebnisse dieses Projektes sind von großer Bedeutung fĂŒr die Forschung zur Zellersatztherapie der Parkinson’schen Erkrankung, deren ultimatives Ziel es ist, eine sichere und verlĂ€sslich expandierbare Zellquelle zu etablieren, die fĂ€hig ist, in dopaminerge Neurone zu differenzieren. Solche Stammzellen wĂŒrden BemĂŒhungen um Transplantationsstrategien fĂŒr neurodegenerative Erkrankungen unterstĂŒtzen und vorantreiben

    Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ

    Get PDF
    Novel approaches to develop naturally-induced drug delivery in tumor environments in a deterministic and controlled manner have become of growing interest in recent years. Different polymeric-based microstructures and other biocompatible substances have been studied taking advantage of lactic acidosis phenomena in tumor cells, which decrease the tumor extracellular pH down to 6.8. Micromotors have recently demonstrated a high performance in living systems, revealing autonomous movement in the acidic environment of the stomach or moving inside living cells by using acoustic waves, opening the doors for implementation of such smart microengines into living entities. The need to develop biocompatible motors which are driven by natural fuel sources inherently created in biological systems has thus become of crucial importance. As a proof of principle, we here demonstrate calcium carbonate Janus particles moving in extremely light acidic environments (pH 6.5), whose motion is induced in conditioned acidic medium generated by HeLa cells in situ. Our system not only obviates the need for an external fuel, but also presents a selective activation of the micromotors which promotes their motion and consequent dissolution in presence of a quickly propagating cell source (i.e. tumor cells), therefore inspiring new micromotor configurations for potential drug delivery systems

    Biomimetic microelectronics for regenerative neuronal cuff implants

    Get PDF
    Smart biomimetics, a unique class of devices combining the mechanical adaptivity of soft actuators with the imperceptibility of microelectronics, is introduced. Due to their inherent ability to self‐assemble, biomimetic microelectronics can firmly yet gently attach to an inorganic or biological tissue enabling enclosure of, for example, nervous fibers, or guide the growth of neuronal cells during regeneration

    Comparative microbiomics of tephritid frugivorous pests (Diptera : Tephritidae) from the field : a tale of high variability across and within species

    Get PDF
    The family Tephritidae includes some of the most notorious insect pests of agricultural and horticultural crops in tropical and sub-tropical regions. Despite the interest in the study of their gut microbiome, our present knowledge is largely based on the analysis of laboratory strains. In this study, we present a first comparative analysis of the gut microbiome profiles of field populations of ten African and Mediterranean tephritid pests. For each species, third instar larvae were sampled from different locations and host fruits and compared using 16S rRNA amplicon sequencing and a multi-factorial sampling design. We observed considerable variation in gut microbiome diversity and composition both between and within fruit fly species. A "core" microbiome, shared across all targeted species, could only be identified at most at family level (Enterobacteriaceae). At genus level only a few bacterial genera (Klebsiella,Enterobacter, andBacillus) were present in most, but not all, samples, with high variability in their relative abundance. Higher relative abundances were found for seven bacterial genera in five of the fruit fly species considered. These wereErwiniainBactrocera oleae,LactococcusinB. zonata,ProvidenciainCeratitis flexuosa,Klebsiella, andRahnellainC. podocarpiandAcetobacterandSerratiainC. rosa. With the possible exception ofC. capitataandB. dorsalis(the two most polyphagous species considered) we could not detect obvious relationships between fruit fly dietary breadth and microbiome diversity or abundance patterns. Similarly, our results did not suggest straightforward differences between the microbiome profiles of species belonging to Ceratitisand the closely relatedBactrocera/Zeugodacus. These results provide a first comparative analysis of the gut microbiomes of field populations of multiple economically relevant tephritids and provide base line information for future studies that will further investigate the possible functional role of the observed associations

    Emerging role of LRRK2 in human neural progenitor cell cycle progression, survival and differentiation

    Get PDF
    Despite a comprehensive mapping of the Parkinson's disease (PD)-related mRNA and protein leucine-rich repeat kinase 2 (LRRK2) in the mammalian brain, its physiological function in healthy individuals remains enigmatic. Based on its structural features and kinase properties, LRRK2 may interact with other proteins involved in signalling pathways. Here, we show a widespread LRRK2 mRNA and/or protein expression in expanded or differentiated human mesencephalic neural progenitor cells (hmNPCs) and in post-mortem substantia nigra PD patients. Using small interfering RNA duplexes targeting LRRK2 in hmNPCs following their differentiation into glia and neurons, we observed a reduced number of dopaminergic neurons due to apoptosis in LRRK2 knockdown samples. LRRK2-deficient hmNPCs exhibited elevated cell cycle- and cell death-related markers. In conclusion, a reduction of LRRK2 expression in hmNPCs severely impaired dopaminergic differentiation and/or survival of dopaminergic neurons most likely via preserving or reactivating the cell cycle

    Hepatic effects of tartrazine (E 102) after systemic exposure are independent of oestrogen receptor interactions in the mouse

    Get PDF
    Tartrazine is a food colour that activates the transcriptional function of the human oestrogen receptor alpha in an in vitro cell model. Since oestrogens are cholestatic, we hypothesised tartrazine will cause periportal injury to the liver in vivo. To test this hypothesis, tartrazine was initially administered systemically to mice resulting in a periportal recruitment of inflammatory cells, increased serum alkaline phosphatase activity and mild periportal fibrosis. To determine whether an oestrogenic effect may be a key event in this response, tartrazine, sulphonated metabolites and a food additive contaminant were screened for their ability to interact with murine oestrogen receptors. In all cases, there were no interactions as agonists or antagonists and further, no oestrogenicity was observed with tartrazine in an in vivo uterine growth assay. To examine the relevance of the hepatic effects of tartrazine to its use as a food additive, tartrazine was orally administered to transgenic NF-ÎșB-Luc mice. Pre- and concurrent oral treatment with alcohol was incorporated given its potential to promote gut permeability and hepatic inflammation. Tartrazine alone induced NF- ÎșB activities in the colon and liver but there was no periportal recruitment of inflammatory cells or fibrosis. Tartrazine, its sulphonated metabolites and the contaminant inhibited sulphotransferase activities in murine hepatic S9 extracts. Given the role of sulfotransferases in bile acid excretion, the initiating event giving rise to periportal inflammation and subsequent hepatic pathology through systemic tartrazine exposure is therefore potentially associated an inhibition of bile acid sulphation and excretion and not on oestrogen receptor-mediated transcriptional function. However, these effects were restricted to systemic exposures to tartrazine and did not occur to any significant effect after oral exposure

    Increased trans-glycosylation activity of hexosaminidases for synthesis of human milk oligosaccharides

    Get PDF
    It is well known that the composition of human breast milk differs significantly from the one of ordinary bovine milk. Especially the presence of sialylated and fucosylated oligosaccharides contributes to its health and development promoting features for newborn infants. [1] Nevertheless, not all newborns and especially premature infants sometimes cannot be breast fed for different reasons. For those children it is important that they receive a proper balanced formula product containing the above mentioned human milk oligosaccharides (HMOs). With respect to this we are developing new enzymatic routes for synthesis of sialylated and fucosylated oligosaccharides, which can be used as functional ingredient for infant formula. In a previous work two candidate hexoasaminidases (both belonging to the GH20 family) were identified from a metagenomic library, which were able to synthesize the basic HMO backbone structure, Lacto-N-triose II, from chitobiose and lactose by trans-glycosylation. [2] Since the yields using these enzymes were low (2% for hex1 and 8% for hex2 based on the donor substrate chitobiose) we wanted to increase their trans-glycosylation activity to increase their applicability for a feasible process. It was decided to follow a rational design approach first to keep the screening effort low. Therefore peptide pattern recognition (PPR) [3] analysis was performed on the whole GH20 CAZy family (approx. 3000 sequences) to identify other enzymes with potential trans-glycosylation activity based on relatedness. By phylogenetic analysis of the group containing the two known enzymes (approx. 1000 sequences) and subsequent alignment of the closely related sequences a loop insertion close to the active site was identified. Homology modelling revealed that introduction of this loop structure into hex1 and hex2 would lead to a significantly narrower active site and therefore contribute to exclusion of water from the active site, which is a well-known strategy to increase trans-glycosylation activity. The proposed loop mutants were then expressed, purified and characterized towards trans-glycosylation activity. For hex2 it turned out that none of the loop mutants showed an improved trans-glycosylation activity compared to the wild-type. But for hex1 three out of four showed an up to seven-fold improved trans-glycosylation activity compared to the wild-type, which refers even to a higher trans-glycosylation activity than previously observed for the hex2 wild-type. [4] In conclusion we succeeded in engineering an enzyme towards increased trans-glycosylation activity using a custom-made rational approach utilizing available sequence analysis methods. [1] L. Bode, Glycobiology 2012, 22, 1147–1162. [2] C. Nyffenegger, R. T. Nordvang, B. Zeuner, M. ĆÄ™ĆŒyk, E. Difilippo, M. J. Logtenberg, H. A. Schols, A. S. Meyer, J. D. Mikkelsen, Appl. Microbiol. Biotechnol. 2015, 99, 7997–8009. [3] P. K. Busk, L. Lange, Appl. Environ. Microbiol. 2013, 79, 3380–3391. [4] S. B. Jamek, J. Muschiol, J. Holck, P. K. Busk, L. Lange, J. D. Mikkelsen, A. S. Meyer, 2017, manuscript submitted
    • 

    corecore