268 research outputs found

    Faraday Rotation Spectroscopy of Quantum-Dot Quantum Wells

    Full text link
    Time-resolved Faraday rotation studies of CdS/CdSe/CdS quantum-dot quantum wells have recently shown that the Faraday rotation angle exhibits several well-defined resonances as a function of probe energy close to the absorption edge. Here, we calculate the Faraday rotation angle from the eigenstates of the quantum-dot quantum well obtained with k.p theory. We show that the large number of narrow resonances with comparable spectral weight observed in experiment is not reproduced by the level scheme of a quantum-dot quantum well with perfect spherical symmetry. A simple model for broken spherical symmetry yields results in better qualitative agreement with experiment.Comment: 9 pages, 4 figure

    Spline-based nonparametric inference in general state-switching models

    Get PDF
    State‐switching models combine immense flexibility with relative mathematical simplicity and computational tractability and, as a consequence, have established themselves as general‐purpose models for time series data. In this paper, we provide an overview of ways to use penalized splines to allow for flexible nonparametric inference within state‐switching models, and provide a critical discussion of the use of corresponding classes of models. The methods are illustrated using animal acceleration data and energy price data.PostprintPeer reviewe

    Interdigitated back contact silicon heterojunction solar cells Towards an industrially applicable structuring method

    Get PDF
    We report on the investigation and comparison of two different processing approaches for interdigitated back contacted silicon heterojunction solar cells our photolithography based reference procedure and our newly developed shadow mask process. To this end, we analyse fill factor losses in different stages of the fabrication process. We find that although comparably high minority carrier lifetimes of about 4 ms can be observed for both concepts, the shadow masked solar cells suffer yet from poorly passivated emitter regions and significantly higher series resistance. Approaches for addressing the observed issues are outlined and first solar cell results with efficiencies of about 17 and 23 for shadow masked and photolithographically structured solar cells, respectively, are presente

    Electron and hole states in quantum-dot quantum wells within a spherical 8-band model

    Get PDF
    In order to study heterostructures composed both of materials with strongly different parameters and of materials with narrow band gaps, we have developed an approach, which combines the spherical 8-band effective-mass Hamiltonian and the Burt's envelope function representation. Using this method, electron and hole states are calculated in CdS/HgS/CdS/H_2O and CdTe/HgTe/CdTe/H_2O quantum-dot quantum-well heterostructures. Radial components of the wave functions of the lowest S and P electron and hole states in typical quantum-dot quantum wells (QDQWs) are presented as a function of radius. The 6-band-hole components of the radial wave functions of an electron in the 8-band model have amplitudes comparable with the amplitude of the corresponding 2-band-electron component. This is a consequence of the coupling between the conduction and valence bands, which gives a strong nonparabolicity of the conduction band. At the same time, the 2-band-electron component of the radial wave functions of a hole in the 8-band model is small compared with the amplitudes of the corresponding 6-band-hole components. It is shown that in the CdS/HgS/CdS/H_2O QDQW holes in the lowest states are strongly localized in the well region (HgS). On the contrary, electrons in this QDQW and both electron and holes in the CdTe/HgTe/CdTe/H_2O QDQW are distributed through the entire dot. The importance of the developed theory for QDQWs is proven by the fact that in contrast to our rigorous 8-band model, there appear spurious states within the commonly used symmetrized 8-band model.Comment: 15 pages, 5 figures, E-mail addresses: [email protected], [email protected]

    Electron-Hole Correlations and Optical Excitonic Gaps in Quantum-Dot Quantum Wells: Tight-Binding Approach

    Full text link
    Electron-hole correlation in quantum-dot quantum wells (QDQW's) is investigated by incorporating Coulomb and exchange interactions into an empirical tight-binding model. Sufficient electron and hole single-particle states close to the band edge are included in the configuration to achieve convergence of the first spin-singlet and triplet excitonic energies within a few meV. Coulomb shifts of about 100 meV and exchange splittings of about 1 meV are found for CdS/HgS/CdS QDQW's (4.7 nm CdS core diameter, 0.3 nm HgS well width and 0.3 nm to 1.5 nm CdS clad thickness) which have been characterized experimentally by Weller and co-workers [ D. Schooss, A. Mews, A. Eychmuller, H. Weller, Phys. Rev. B, 49, 17072 (1994)]. The optical excitonic gaps calculated for those QDQW's are in good agreement with the experiment.Comment: 3 figures, to appear in Phys.Rev.

    Three Terminal Perovskite Silicon Tandem Solar Cells with Top and Interdigitated Rear Contacts

    Get PDF
    We present a three terminal 3T tandem approachfor the interconnection of a perovskite top cell with aninterdigitated back contact IBC silicon heterojunction SHJ bottom cell. The general viability of our cell design is verified withdrift diffusion simulations indicating efficient charge carriertransport throughout the whole device and an efficiency potentialof amp; 8776;27 by using readily available absorber and contact materials.Our experimental proof of concept device reaches a combinedPCE of 17.1 when both subcells are operating at their individualmaximum power point. To emulate different operation conditions,the current amp; 8722;voltage characteristics of both cells were obtained bymeasuring one subcell while the other cell was set to afixed biasvoltage. Only a slight mutual dependence of both subcells wasfound. As determined by electrical simulations, this dependence likely stems from the resistance of the electron contact on the cell srear side, which is shared by both subcells. The optimization of this contact turns out to be a major design criterion for IBC 3Ttandems. We demonstrate that our current proof of concept cells are limited by this series resistance as well as by optical losses, andwe discuss pathways to approach the simulated efficiency potential by an optimized device desig

    Toward Annealing Stable Molybdenum Oxide Based Hole Selective Contacts For Silicon Photovoltaics

    Get PDF
    Molybdenum oxide MoOX combines a high work function with broadband optical transparency. Sandwiched between a hydrogenated intrinsic amorphous silicon passivation layer and a transparent conductive oxide, this material allows a highly efficient hole selective front contact stack for crystalline silicon solar cells. However, hole extraction from the Si wafer and transport through this stack degrades upon annealing at 190 C, which is needed to cure the screen printed Ag metallization applied to typical Si solar cells. Here, we show that effusion of hydrogen from the adjacent layers is a likely cause for this degradation, highlighting the need for hydrogen lean passivation layers when using such metal oxide based carrier selective contacts. Pre MoOX deposition annealing of the passivating a Si H layer is shown to be a straightforward approach to manufacturing MoOX based devices with high fill factors using screen printed metallization cured at 190

    Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals

    Full text link
    The structure of the electron quantum size levels in spherical nanocrystals is studied in the framework of an eight--band effective mass model at zero and weak magnetic fields. The effect of the nanocrystal surface is modeled through the boundary condition imposed on the envelope wave function at the surface. We show that the spin--orbit splitting of the valence band leads to the surface--induced spin--orbit splitting of the excited conduction band states and to the additional surface--induced magnetic moment for electrons in bare nanocrystals. This additional magnetic moment manifests itself in a nonzero surface contribution to the linear Zeeman splitting of all quantum size energy levels including the ground 1S electron state. The fitting of the size dependence of the ground state electron g factor in CdSe nanocrystals has allowed us to determine the appropriate surface parameter of the boundary conditions. The structure of the excited electron states is considered in the limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach

    Get PDF
    The synthesis of CdS and CdSe nanocrystallites using the thermolysis of several dithioor diselenocarbamato complexes of cadmium in trioctylphosphine oxide (TOPO) is reported. The nanodispersed materials obtained show quantum size effects in their optical spectra and exhibit near band-edge luminescence. The influence of experimental parameters on the properties of the nanocrystallites is discussed. HRTEM images of these materials show well-defined, crystalline nanosized particles. Standard size fractionation procedures can be performed in order to narrow the size dispersion of the samples. The TOPO-capped CdS and CdSe nanocrystallites and simple organic bridging ligands, such as 2,2¢-bipyrimidine, are used as the starting materials for the preparation of novel nanocomposites. The optical properties shown by these new nanocomposites are compared with those of the starting nanodispersed materials

    Electronic structure and optical properties of ZnS/CdS nanoheterostructures

    Full text link
    The electronic and optical properties of spherical nanoheterostructures are studied within the semi-empirical sp3ssp^{3}s^{*} tight-binding model including the spin-orbit interaction. We use a symmetry-based approach previously applied to CdSe and CdTe quantum dots. The complete one-particle spectrum is obtained by using group-theoretical methods. The excitonic eigenstates are then deduced in the configuration-interaction approach by fully taking into account the Coulomb direct and exchange interactions. Here we focus on ZnS/CdS, ZnS/CdS/ZnS and CdS/ZnS nanocrystals with particular emphasis on recently reported experimental data. The degree of carrier localization in the CdS well layer is analyzed as a function of its thickness. We compute the excitonic fine structure, i.e., the relative intensities of low-energy optical transitions. The calculated values of the absorption gap show a good agreement with the experimental ones. Enhanced resonant photoluminescence Stokes shifts are predicted.Comment: 6 pages, 4 Figures, revtex
    corecore