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State-switchingmodels combine immense
flexibility with relative mathematical sim-
plicity and computational tractability, and
as a consequence have established them-
selves as general-purposemodels for time
series data. In this paper we provide an
overviewofways to use penalised splines to
allow for flexible nonparametric inference
within state-switchingmodels, and provide
a critical discussionof theuseof correspond-
ing classes ofmodels. Themethods are illus-
trated using animal acceleration data and
energy price data.
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1 | INTRODUCTION

State-switchingmodels assume that some observed process — e.g. a financial time series, a sequence
of animal locations recordedwith GPS, or blood samples repeatedly taken for a single individual — is
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driven by an unobserved process that over time switches between different states, each of which
implies a different probability model for the observations. HiddenMarkovmodels (HMMs, Zucchini
et al., 2016) constitute themost prominent example of such a class of models, but there are several
closely related models, e.g. Markov-switching regression models, general state-space models or
Markov-modulated Poisson processes.

State-switching models provide natural frameworks for drawing comprehensive inference in
diverse applied statistical problems arising in, inter alia, speech recognition (Juang and Rabiner, 1991),
brain activity measurements (Langrock et al., 2013), psychological learning experiments (Visser et al.,
2002), oceanicwave andwindmodelling (Bulla et al., 2012), records of volcanic eruptions (Bebbington,
2007), or animal abundance estimation subject to availability bias (Borchers et al., 2013), to name
but a few. Methodologically, a key asset of these classes of models is that an efficient recursive
scheme, the so-called forward algorithm, can be applied to calculate the likelihood (Zucchini et al.,
2016), rendering themodels convenient to work with despite their relatively complex dependence
structure.

There are various methodological contributions in the area of state-switching models that focus
on extensions of the basic model formulations, devisingmore complex dependence structures such
as semi-Markov state processes (Guédon, 2003), coupled HMMs (Sherlock et al., 2013), models with
feedback from the observed to the state process (Zucchini et al., 2008), or hierarchically structured
state processes (Leos-Barajas et al., 2017a). In addition, in the last decade, several papers have
discussed inference for mixedHMMs for longitudinal data (Altman, 2007;Maruotti, 2011; Schliehe-
Diecks et al., 2012), where random effects are used to account for potential heterogeneity across
multiple time series observed. Thus, considerable effort has gone into extending the structure of the
basic model formulation.

However, we argue that a key component of state-switchingmodels, namely the probability model
within states, is often neglected in practical applications. Technological advancements have led to
increasingly large data sets being collected, such that it is nowadays often possible to estimate the
parameters of state-switchingmodels with very high precision. For example, in animal movement
modelling it is nowadays common to fit HMM-typemodels to hundreds of thousands of data points
(see, e.g., Kock et al., 2013, Morellet et al., 2013, Lamb et al., 2017). In these instances, even with state
uncertainty there is sufficient information in the data to obtain an extremely detailed picture of state-
dependent distributions of say distances travelled by an animal per given time unit. It is then often
immediately clear that simple parametric distributions are inadequate to fully capture the shape of
the empirical state-dependent distributions. Ignoring such a lack of fit can invalidate inference, for
example on the number of states and on possible covariate effects on the state-switching dynamics
(Langrock et al., 2015b, Pohle et al., 2017).

In a series of papers, we recently proposed the use of spline smoothing techniques for non-
parametric inferencewithin state-switchingmodels (Langrock et al., 2015a; Langrock et al., 2015b;
Langrock et al., 2017, Adam et al., 2017). The resulting classes of models combine two powerful
tools, namely the forward algorithm for efficient likelihood evaluation, and penalised B-splines (i.e.
P-splines; Eilers and Marx, 1996) for nonparametric inference, to allow for relatively straightfor-
ward and computationally tractable maximum penalised likelihood estimation within state-switching
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models. The versatility of associatedmodel formulations then opens up the way for various classes
of models to be estimated nonparametrically. In this paper, we review these classes of models and
associated spline-based estimation approaches, and discuss the benefits but also the caveats of work-
ing with nonparametric state-switchingmodels. We distinguish state-switching density models (i.e.
HMMs, Section 2) and state-switching regressionmodels (i.e. Markov-switching regressionmodels,
Section 3).

2 | STATE-SWITCHING DENSITY MODELS

2.1 | HiddenMarkovmodels

HiddenMarkovmodels (HMMs) comprise two stochastic processes, only one of which is observed.
The observed process is a time series {Yt }t=1,...,T , the observations of which can be either discrete or
continuous, and alsomultivariate. Here we focus on the case of univariate continuous observations.
In an HMM it is assumed that each observation is generated by one of N component distributions, as
selected by the state of the unobserved state process {St }t=1,...,T , and that conditional on the states,
the observations are independent of each other. In its most basic form, the state process is assumed
to be an N -state Markov chain, and typically exhibits persistence in the different states, thereby
inducing serial correlation in the observed time series. The dependence structure of such a basic
HMM is illustrated in Figure 1.

StSt−1 St+1

Yt−1 Yt Yt+1

· · · · · · hidden

observed

F IGURE 1 Dependence structure of themost basic univariate hiddenMarkovmodel.

Due to the simple dependence structure, in the time-homogeneous case such a basic HMM is
fully specified by the transition probability matrix (t.p.m.), Γ = (γi j ), with γi j = Pr(St+1 = j |St = i ),
the initial state distribution, δ =

(Pr(S1 = 1), . . . ,Pr(S1 = N )
) (often taken to be the stationary

distribution implied by Γ), and the densities f1(y ), . . . , fN (y ) of the state-dependent distributions
(using the shorthand notation fi (y ) = f (y |St = i ), i = 1, . . . ,N ). Thus, to formulate an HMM, one
needs to choose the number of states, N , and the class of probability distributions fromwhich the
fi (y ) are taken. The former is essentially a model selection problem (albeit a hard one, see Pohle et al.,
2017). The choice of the distributional family is usually dictated by the data at hand. For example,
for log-returns on shares, which are real numbers, it is common to assume either normal or, if more
flexibility to accommodate heavy tails is desired, Student-t state-dependent distributions (Bulla
and Bulla, 2006). In animal movementmodelling, key quantities commonly considered are the step
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lengths an animal performs between consecutive locations at which it is observed. Step lengths
are, by nature, positive real numbers, and thus gamma orWeibull state-dependent distributions are
commonly assumed (Michelot et al., 2016).

2.2 | Motivation for nonparametric inferencewithin HMMs

While conceptually straightforward, choosing an adequate parametric family for the state-dependent
distributions in practice is by nomeans a trivial task. As in simple univariate density estimation, it is
often the case that the actual shape of the state-dependent distributions is complex, e.g. exhibiting
heavy tails, skewness, or evenmultimodality. This is exacerbated by the fact that there is noway of
visualising the empirical distributions within a state a priori (here: before amodel has been fitted),
since it is unknownwhich observations are associatedwith which underlying state. In practice, it is
thus often very difficult to choose an adequate parametric family.
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F IGURE 2 Left plot: histogram of 3000 observations generated from a 2-state HMMwith
skewed state-dependent distributions. Right plot: true state-dependent distributions used to
generate the data (solid lines) and estimated normal state-dependent distributions (dashed lines) —
both the true and the estimated distributions here are weightedwith the stationary probabilities of
theMarkov chain occupying the different states (true and estimated, respectively).

We illustrate this point in Figure 2. The left plot displays a histogram of 3000 observations that
were simulated from a 2-state HMM. Based on this estimator of the marginal distribution of the
observations, it is tempting to conclude that two distinct normal distributions, withmeans roughly
at −20 and 20, respectively, may have generated the data. However, the actual state-dependent
distributions used to generate the data were heavily right skewed (state 1) and left skewed (state
2), respectively. The right plot in Figure 2 displays the consequences of fitting a misspecified 2-
state HMMwith normal state-dependent distributions to these data. It may be argued here that
the deviation of the fitted from the actual state-dependent distributions is only relatively minor.
However, even such aminormismatch can have various undesirable consequences, including:
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• a poor predictive performance (which would be problematic for example in financial riskmanage-
ment applications);

• frequent misclassification of observations particularly in the areas of overlap between the state-
dependent distributions (which could be problematic if interest primarily lies in decoding the
hidden states, for example in recognition tasks);

• invalid inference on state-switching dynamics (e.g. regarding potential covariate influence on
state transition probabilities);

• invalid inference on the number of states.

The last point above was discussed in detail in Langrock et al. (2015b) and Pohle et al. (2017). In
short, if a misspecifiedmodel such as the 2-state HMMwith normal distributions is fitted, thenmodel
selection criteria will point to models with more states than actually present in the data, with the
additional states being included to “mop up” the structure that is not being accounted for, in this
case the heavy tails of the state-dependent distributions. While the example above is artificial, this is
indeed amajor problem in practical applications of HMMs, where simple parametric distributions are
rarely sufficiently flexible to capture the key features of empirical distributions within states, such
that conductingmodel selection on N will inevitably lead to overly complex state architectures.

An obvious way to overcome the insufficient flexibility of the 2-state normal HMMabovewould
be to use mixtures of say normal distributions within states (Volant et al., 2015; Holzmann and
Schwaiger, 2015; Leos-Barajas et al., 2017b). The number of mixture components to be used for each
state can then be determined using model selection criteria or testing. Alternatively, a very large
number of mixture components, say 30, can be used, then including a suitable penalty term in the
likelihood as to avoid overfitting. In such HMMs, the state-dependent distributions are constructed
as linear combinations of much simpler densities. Not only the weight in the mixture, but also the
location and scale of these densities is estimated from the data. While feasible for very small numbers
of components, this quickly leads to severe numerical instability if many component distributions
need to be considered, thus rendering this approach less useful for distributions with particularly
complex shapes. Alternatively, one could specify a large number of fixed basis densities, then estimat-
ing only the weights of these in the linear combination that ultimately yields the state-dependent
distribution. This strategy is explained inmore detail in the subsequent section.

2.3 | B-spline-based nonparametric model formulation

There are differentways to specify a set of basis densities fromwhich a (state-dependent) distribution
can be constructed via linear combination. Langrock et al. (2015b) suggested using B-splines which,
in particular, form an efficient and convenient basis (de Boor, 1978; Eilers andMarx, 1996). In state i ,
i = 1, . . . ,N , the state-dependent distribution is then formulated as follows:

fi (y ) =
K∑

k=−K

ωk ,iφk (y ), (1)
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with a set of regularly spaced B-splinesφ−K , . . . ,φK , standardised such that they integrate to one.
In order to ensure that fi (y ) is a probability density function, the coefficients to be estimated,
ω−K ,i , . . . ,ωK ,i , are reparameterised using themultinomial logit link:

ωk ,i =
exp(βk ,i )∑K

j=−K exp(βj ,i )
,

such that the (unconstrained) coefficients βk ,i are estimated. Using this transformation, the resulting
ωk ,i (and hence also fi (y )) are non-negative and sum to one (such that ∫ fi (y )dy = 1 due to the
standardisation of the B-spline basis functions). We set βi ,0 = 0 for identifiability. Cubic B-splines are
twice continuously differentiable and hence yield visually smooth density estimates, such that they
constitute a suitable default.

When estimated nonparametrically, themarginal distribution of the observations could in fact
already be captured using just one distribution as formulated in (1), i.e. a single-statemodel. However,
such a model would not capture any serial correlation. If there is correlation in the time series —
typically such that there is persistence in the states — then nonparametric HMMs with multiple
states are identifiable. Mathematically, identifiability in nonparametric HMMs holds if the t.p.m. has
full rank and the state-dependent distributions are distinct (Alexandrovich et al., 2016). In practice,
these conditions will usually be satisfied.

Using the artificial example discussed above, Figure 3 illustrates how the state-dependent dis-
tributions are constructed as linear combinations of weighted B-spline basis densities. Fitting this
model to the simulated data was achieved by numerically maximising the (penalised) log-likelihood
with respect to the coefficientsωi ,k , i = 1, . . . ,N , k = −K , . . . ,K , as well as the t.p.m. Γ. A relatively
large number of basis elements, 51 (henceK = 25), was chosen to obtain virtually unlimited flexibility
for capturing complex distributional shapes. A penalty termwas added to the log-likelihood to control
the wiggliness of the fitted distribution (and thus avoid overfitting). More details on this penalised
likelihood approach are provided in the subsequent section.

2.4 | Inference

2.4.1 | Direct numerical maximum penalised likelihood

Themost straightforward way to fitting anHMM, either parametric or nonparametric, to data is via
numerical maximisation of the likelihood with respect to the parameters. In order to evaluate the
likelihood, a recursive scheme called the forward algorithm is used. For this, we consider the forward
variables at time t ,

αt =
(
αt (1), . . . , αt (N )

)
, where αt (i ) = f (y1, . . . , yt , st = i ), i = 1, . . . ,N .

The variableαt contains information on the likelihood of all observations up to time t (since f (y1, . . . ,
yt ) =

∑N
i=1 αt (i )), while retaining information on the probabilities of the process being in the different

states (since Pr(St = i |y1, . . . , yt ) = αt (i )/∑N
i=1 αt (i )). Crucially, the forward variables can be calcu-
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F IGURE 3 True state-dependent distributions (solid lines) and state-dependent distributions
estimated using linear combinations of weighted B-splines (dashed lines). Both the true and the
estimated distributions here are weightedwith the stationary probabilities of theMarkov chain
occupying the different states (true and estimated, respectively). Displayed below the densities are
the contributions of the individual B-spline basis functions to the density estimators.

lated recursively, beginning at time t = 1, then traversing along the time series and updatingαt along
the way, as follows:

α1 = δP(y1), αt = αt−1ΓP(yt ), (2)

where P(yt ) = diag(f1(yt ), . . . , fN (yt )) . The likelihood is then obtained as
L = f (y1, . . . , yT ) =

N∑
i=1

αT (i ) = αT 1
>, (3)

where 1 ∈ ÒN is a row vector of ones. Notably, the computational effort involved in evaluating L
is only linear inT , the number of observations, which opens up the way for numerical maximum
likelihood even for long time series. Technical issues arising in the numerical maximisation of L,
such as parameter constraints, numerical underflow, and local maxima, are discussed in detail in
Chapter 3 of Zucchini et al. (2016). In particular, a scaling strategy can be applied to calculate the
log-likelihood, which is used in the penalised spline estimation approach presented below. To guard
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against missing the global maximum of the penalised log-likelihood, themain strategy in practice is to
run the algorithmmany times using random initial points.

When B-splines are used to construct the densities of the state-dependent distributions, via
linear combination as in (1), then the diagonal entries of thematrices P(yt ), t = 1, . . . ,T , can conve-
niently be calculated as

©­­­­«
f1(y1) . . . fN (y1)

.

.

.
.
.
.

f1(yT ) . . . fN (yT )

ª®®®®¬
= BΩ,

where

B =
©­­­­«
φ−K (y1) . . . φK (y1)

.

.

.
.
.
.

φ−K (yT ) . . . φK (yT )

ª®®®®¬
and Ω =

©­­­­«
ω−K ,1 . . . ω−K ,N
.
.
.

.

.

.

ωK ,1 . . . ωK ,N

ª®®®®¬
.

The entriesωk ,i are parameters to be estimated, while the designmatrixB is fixed. To avoid overfitting,
we penalise the log-likelihood by adding a wiggliness penalty as in Eilers andMarx (1996):

lpen = log L −
N∑
i=1

λi
2

K∑
−K+m

(∆mωk ,i )
2, (4)

where ∆ωk = ωk − ωk−1 and ∆mωk = ∆(∆m−1ωk ). The λ1, . . . , λN are state-specific smoothing
parameters, which control the influence of the penalty for each state. Letting m = 2, we obtain
second-order differences between adjacent B-spline coefficients. This provides an approximation to
the integrated squared second derivatives (theminimiser which wemight definitionally consider to
be “smoothest”; Green and Silverman, 1994). However, third-order differences are also theoretically
appealing (Eilers andMarx, 1996).

Estimation of the smoothing parameters for nonparametric HMMs is underdeveloped at this
point. Current approaches include: cross-validation, model selection criteria that take into account
the penalisation (thus estimating the effective degrees of freedom, rather than simply counting
parameters, to measure model complexity), or subjective selection based on visual inspection of
fittedmodels. Regarding the former two (formal) methods, we found that while theymostly produce
reasonable values for the λi , they are nevertheless somewhat unstable and sometimes fail completely
(Langrock et al., 2015b; Langrock et al., 2017). Overall, smoothing parameter selection remains a
challenging task in thesemodel classes. In the subsequent section, we outline how this situation can
potentially be improved upon by using the expectation-maximisation (EM) algorithm, rather than
direct numerical maximisation, for finding themaximum penalised likelihood estimate.
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2.4.2 | Estimation using the EM algorithm

An alternative way to fitting an HMM to data, which also arrives at themaximum likelihood estimate,
is via the EM algorithm (Baum et al., 1970; Dempster et al., 1977; Welch, 2003). The basic idea of
the EM algorithm is to iteratively imputemissing data or latent variables (within HMMs: the states)
conditional on the observed data and a given set of model parameters (which is referred to as the
E step), then update the parameters using the current guess of themissing data (which is referred
to as theM step), and so forth until convergence. Implementation of the EM algorithm for HMMs is
technically more involved than direct numerical likelihoodmaximisation (MacDonald, 2014), such
that the latter approachwill usually be preferable. However, the EM algorithm can bemore robust
in terms of finding the global maximum of the likelihood (Bulla and Berzel, 2008). In addition, it is
sometimes advantageous to be able tomaximise the parameters for given latent states (as done in
theM step), which we discuss below for the case of nonparametric HMM formulations using splines.

Assuming the state sequence s1, . . . , sT of an HMM to be observed, and defining the quantities
ui (t ) = 1{St =i } and vi j (t ) = 1{St−1=i ,St =j } for i , j = 1, . . .N , t = 1, . . . ,T , the complete-data log-
likelihood (CDLL), i.e. the joint log-likelihood of the observations and the states, can bewritten as

lc = log Lc = log
(
δs1

T∏
t=2

γst−1,st

T∏
t=1

fst (yt )

)
= log(δs1 ) +

T∑
t=2

log(γst−1,st ) +
T∑
t=1

log(fst (yt ))
=

N∑
i=1

ui (1) log(δi ) +
N∑
i=1

N∑
j=1

T∑
t=2

vi j (t ) log(γi j ) +
N∑
i=1

T∑
t=1

ui (t ) log(fi (yt )),
with the associated complete-data penalised log-likelihood (CDPLL)

lc,pen = lc −
N∑
i=1

λi
2

K∑
−K+m

(∆mβk ,i )
2 .

Note that the different parameters (i.e., the δi , the γi j , and the βk ,i ) appear in distinct summands,
which greatly simplifies themaximisation in theM step. Unlike in (4), here we penalise wiggliness by
consideringm-th order differences of the unconstrained βk ,i parameters (rather than considering
theωk ,i ), in order to be able to follow the approach developed in Schellhase and Kauermann (2012),
as detailed below.

However, the state sequence is of course not actually observed, and the main idea of the EM
algorithm is to alternate between guessing the states (given the parameters) and updating the param-
eter values based on the CDPLL (given the states). More specifically, expressing the state sequence in
terms of the indicator variables ui (t ) and vi j (t ) defined above, we calculate the conditional expecta-
tions of these given the current parameter values and the data, which is straightforward using the
forward and backward variables. The forward variables are defined as in the previous section, and
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the backward variables at time t as

βt =
(
βt (1), . . . , βt (N )

)
, where βt (j ) = f (yt+1, . . . , yT |St = j ), j = 1, . . . ,N .

Analogously as in case of the forward variables, the backward variables can be calculated recursively
using the backward algorithm, beginning at time t = T , then traversing backwards through time:

βT = 1, β>t = ΓP(yt+1)β>t+1 .

The E step involves calculating the conditional expectations of the ui (t ) and of the vi j (t ), respec-
tively, given the data and the current parameter estimates, as detailed in the following.

1. It follows from the definition of the forward and backward probabilities that

ûi (t ) = Pr(St = i | y1, . . . , yT ) = αt (i )βt (i )

αT 1
>

for t = 1, . . . ,T , i = 1, . . . ,N .
2. It follows from the definition of the forward, backward and state transition probabilities that

v̂i j (t ) = Pr(St−1 = i , St = j | y1, . . . , yT ) = αt−1(i )γi j fj (yt )βt (j )

αT 1
>

for t = 2, . . . ,T , i , j = 1, . . . ,N .

TheM step involves themaximisation of the CDPLL—where the ui (t ) and vi j (t ) are replaced by
their current estimates obtained in the previous E step—with respect to themodel parameters:

1. Maximising the CDPLLwith respect to δi yields the closed-form solution

δ̂i = ûi (1)

for i = 1, . . . ,N .
2. Maximising the CDPLLwith respect to γi j yields the closed-form solution

γ̂i j =

∑T
t=2 v̂i j (t )∑N

k=1

∑T
t=2 v̂i k (t )

for i , j = 1, . . . ,N .
3. Maximising the CDPLLwith respect to the βk ,i is slightly more involved, as they appear in both

the third and the fourth summand, the latter of which also depends on the smoothing parameters
λi . Similar to direct numerical maximum penalised likelihood, a natural approach is to estimate
the βk ,i for some fixed λi and select among different values using generalised cross-validation
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or information criteria. However, although theoretically straightforward, these approaches
typically require a grid search and are therefore computationally intensive. To overcome this
drawback, we estimate the λi within eachM step, using a (linear) mixedmodel representation
(Schellhase and Kauermann, 2012). Now the penalty matrices can be considered to be prior
precision matrices for the βk ,i (which are considered as random effects). The model can then
be estimated using restrictedmaximum likelihood estimation (REML; Kauermann, 2005;Wood,
2011). Following Schellhase and Kauermann (2012), an estimating equation for the λi can be
obtained from differentiating the linear mixedmodel log-likelihoodwith respect to λi , yielding
the equation

λ̂−1i =
β̂>
i
Dm β̂i

df(λ̂i ) − (m − 1) , (5)

where the effective degrees of freedom, df(λ̂i ), can be approximated by df(λ̂i ) = tr(J−1p (β̂i ;λi =
λ̂i ) Jp (β̂i ;λi = 0))with Jp (βi ;λi ) denoting the Hessian matrix of the CDPLL with respect to βi
for some fixed λi . Note that both sides of (5) depend on λ̂i , such that the solution needs to be
found iteratively. Using the resulting estimate λ̂i , the relevant term in the CDPLL can then be
maximised with respect to the βk ,i using someNewton-Raphson-type optimisation routine.

The EM algorithm alternates between the E and the M step until some convergence threshold is
satisfied.

2.5 | Case study: oceanic whitetip shark acceleration data

HMMs are prominently used as tools for modelling animal movement data because of their ability to
connect observedmovementmetrics to underlying states, where these states are post-hoc connected
to general behaviours (e.g. resting, foraging or travelling). Accelerometers are a common device that
is used to recordmovements of an animal along three axes at very fine temporal scales (e.g. multiple
times per second). These devices can collect data over multiple days, often resulting in millions of
data points.

In this case study for illustrating spline-based nonparametric HMMs, we consider acceleration
data collected for an oceanic whitetip shark at a rate of 16 Hz over 4 days. In order to obtain a single
representativemetric that incorporates all axes of movement, we used a low-pass filter to remove
the static contribution due to gravity, and combined accelerationmeasurements from the three axes
to calculate Overall Dynamic Body Acceleration (ODBA).We further averagedODBA values over 3s
(non-overlapping) windows, resulting in 98,201 observations. ODBA is frequently used as ameasure
of energy expenditure but we use it as a high-resolution proxy for activity. As these sharks never stop
swimming, there is no typical rest state (i.e. ODBA can never be zero) but there are peaks in the time
series that indicate bursts in activity.

We developed an HMM with N = 3 states to analyse the time series of ODBA values, with
the states reflecting general levels of activity. Due to some extreme values in the data, we first log
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F IGURE 4 Left plot: Histogram of lODBA values. Right plot: 3-state nonparametric HMMfitted
to the time series of lODBA values; the state-dependent densities, and also the associated weighted
B-spline basis functions used to build these densities, here are weighted by the corresponding
entries of the stationary distribution under the fittedmodel.

transformed theODBA values (lODBA) before fitting the HMM. A visual inspection of the histogram,
which is displayed in Figure 4, reveals two clear modes in lODBA values and a long right tail. The
first mode reflects the shark exerting less energy and slowly cruising, the secondmode reflects more
active behaviour, and the values that lie in the right tail reflect the highest energetic movements, i.e.
the largest amounts of activity. The three types of activity can also easily be seen in Figure 5, which
displays a subset of the time series analysed here. Because of the size of the data set, there is rich
information in the data on essentially every single aspect of the shape of themarginal distribution of
lODBA values, and it is clear that the features displayed in the histogram cannot be captured well
with relatively few (simple) parametric densities. That is, tying simple parametric state-dependent
densities directly to biological behaviours is not feasible here. Moreover, attempting to do so could
negatively affect the interpretation of the results, and also any potential inference on the state-
switching dynamics.

Inference for the 3-state HMM was conducted via direct maximisation of the penalised log-
likelihood, conditional on the state-specific smoothing parameters. The smoothing parameters were
selected via AIC from a grid of possible values, as described in Langrock et al. (2015b). The fitted
HMM indicates high persistence in the states— as is typically the case—with the diagonal entries
of the t.p.m. estimated as γ̂11 = 0.959, γ̂22 = 0.962 and γ̂33 = 0.962, respectively. The associated
stationary distribution of theMarkov chain is δ̂ = (0.45, 0.28, 0.27).

With this case study, we demonstrate the feasibility of the nonparametric estimation approach
when dealing with (large) real data sets. When combinedwith diving data (depth collected at 1Hz;
not shown here) it is clear that the shark was in state 1 (low activity) during descent phases of the
dive, but in state 2 or 3 during the ascent. This is biologically realistic as sharks are negatively buoyant
and need minimal swimming activity during the dive. The analysis also shows that there may be
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F IGURE 5 Globally decoded time series of lODBA values observed onMay 9th, 2014, during the
morning hours.

subtle differences in behaviour during the ascent; powered swimming is always needed but some
dive ascents include a burst in activity. These could be related to foraging or some other unknown
behaviour.

Using nonparametric inference via P-splines for the HMM,wewere able to capture the slight
multimodality of state 1 and hencemore accurately capture the corresponding biological behaviour.
Wewould not have been able to do sowithin a single state if we had used say a normal distribution.
Such a potential lack of flexibility of (parametric) state-dependent distributions can indeed constitute
a major problemwhenmaking inference related to the state process, ranging from overestimation of
the number of states and inaccurate state decoding to invalid inference on covariate influence (Pohle
et al., 2017).

3 | STATE-SWITCHING REGRESSION MODELS

3.1 | Markov-switching linear regressionmodels

Markov-switching regressionmodels are closely related to HMMs, but address a slightly different
situation. In its most basic (linear) form, aMarkov-switching regressionmodel is given as follows:

Yt = β
(st )
0 + β (st )1 xt1 + . . . + β

(st )
P
xt P + σ

(st )εt , (6)

where εt iid∼ N(0, 1) (cf. Hamilton, 1989; Frühwirth-Schnatter, 2006; Kim et al., 2008).
Just like HMMs, a Markov-switching regression model involves a time series {Yt }t=1,...,T and

an underlying state process {St }t=1,...,T , but additionally also an associated sequence of covariate
vectors x1, . . . , xT , with xt = (xt1, . . . , xt P ), affecting the observations. And in contrast to HMMs,
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it is not the density of the observationsYt that is (directly) chosen by the underlying state st , but
instead the regression function specifying the effect of xt onYt , given state st . In otherwords, the linear
relationship between xt and themean ofYt , as well as the residual variance, depends on the state
of the underlying hiddenMarkov chain. The dependence structure inMarkov-switching regression
models is illustrated in Figure 6.

StSt−1 St+1

Yt−1 Yt Yt+1

· · · · · ·

xt−1 xt xt+1

hidden

observed

F IGURE 6 Dependence structure inMarkov-switching regressionmodels.

Markov-switching regressionmodels are particularly popular in economics, where, for example,
during a recession the effect of some explanatory variables xt on some economic indicatorYt might
be very different compared to times of economic growth (Hamilton, 2008). The states are usually
persistent in the sense that the corresponding regimes tend to be active for much longer periods of
time than they would be if there was no serial correlation in themechanism selecting the regimes.

3.2 | Motivation for nonparametric inference withinMarkov-switching re-
gressionmodels

Themotivation for considering nonparametric estimation withinMarkov-switching regressionmod-
els is essentially analogous to that given in case of nonparametric HMMs (Section 2.2). For scenarios
in whichMarkov-switching regressionmodels shall be used, one cannot consider scatter plots of the
(xt , yt ) tuples separately for each state before fitting amodel, since it is unknownwhich observations
are associated with which underlying state. This renders it difficult to choose a priori if a simple
linear state-dependent predictor will be sufficient. In practical applications of Markov-switching
regressionmodels, linear predictors do however tend to be usedwith little or no investigation into
their suitability.

Figure 7 illustrates how difficult it can be to formulate an adequateMarkov-switching regression
model based on exploratory data analysis. The left plot displays a scatter plot of 1000 pairs of
observations (xt , yt ), t = 1, . . . , 1000, generated from a 2-stateMarkov-switching regressionmodel.
Based on this scatter plot, it is next to impossible to decidewhether or not linear state-dependent
predictors may be adequate. (In fact, it is not even clear at all from this plot alone why a Markov-
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F IGURE 7 Left plot: scatter plot of 1000 pairs of observations (xt , yt ) generated from a 2-state
Markov-switching regressionmodel. Right plot: true state-dependent regression functions used to
generate the data (solid lines) and estimated linear state-dependent regression functions (dashed
lines).

switching regressionmodel could be a suitable model — this insight could be gleaned from additional
inspections of the sample autocorrelation function, or perhaps could have been drawn from expert
knowledge.) The actual state-dependent regression functions used to generate the data here were
highly nonlinear in both states; see the right plot in Figure 7. Figure 7 also displays the consequences
of fitting a misspecified 2-stateMarkov-switching linear regressionmodel, as given in (6) (case P = 1),
to these data. Here the deviation of the fitted from the actual state-dependent regression functions
is substantial, such that it is obvious that the possible consequences listed in Section 2.2 for the
case of HMMs—poor predictive performance, frequent statemisclassification, invalid inference on
state-switching dynamics and on N —would clearly arise also in this scenario.

ForMarkov-switching regressionmodels, themost obvious way to overcome insufficient flex-
ibility of linear state-dependent predictors is to use polynomial predictors instead. This in many
cases will indeed be the best strategy, and we recommend this to be explored before considering
much more complicated nonparametric estimation. As in standard regression scenarios (without
time series structure and regime shifts), the estimation of polynomial regression functions quickly
becomes unstable near the boundaries of the support, and generally highly sensitive to outliers, when
increasing the degree of the polynomial. In addition, especially withmany covariates in themodel it
can be cumbersome to explore all plausible models, with different polynomial degrees. Thus, it may
sometimes be preferable to directly resort to a nonparametric approach instead, as discussed in the
subsequent section.
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3.3 | B-spline-based nonparametric model formulation

We initially present our nonparametric estimation approach for the case of normally distributed
errors, thus replacing the linear predictor in (6); in Sections 3.5 and 3.6, this model formulation will
be extended to allow for other response distributions. For now, we consider the following flexible
extension of (6), replacing the (state-dependent) linear effects of all covariates by (state-dependent)
smooth effects:

Yt = β
(st )
0 + f (st )1 (xt1) + f

(st )
2 (xt2) + . . . + f

(st )
P
(xt P )︸ ︷︷ ︸

=η(st )(xt )

+σ (st )εt ,

where β (i )0 , i = 1, . . . ,N , are state-dependent intercepts, andwhere η(st )(xt ) is a shorthand notation
for the state-dependent predictor. An implicit assumption made here is that the state-dependent
effects of the covariates xt1, . . . , xt P are additive (in the sense of generalized additive models, see
Wood, 2017). For flexible estimation, we express each of the functions f (i )p , i = 1, . . . ,N , p = 1, . . . , P ,
as a finite linear combination of basis functions,φ1, . . . ,φK :

f
(i )
p (x ) =

K∑
k=1

ωi ,p,kφk (x ).

For each of the functions f (i )p , we need to fix one of the coefficients in order to render the model
identifiable.

For the same reasons as in Section 2.3, the examples below use cubic B-splines as basis functions
φ1, . . . ,φK . The B-spline basis size, K , determines the flexibility of the functional form. However,
instead of trying to select an optimal K , we again follow the spline literature (e.g., Eilers andMarx,
1996, Wood, 2017) and penalise the likelihood, thus the basis size simply needs to be sufficiently
large in order to ensure sufficient flexibility.

Using the toy example above (Figure 7), with only one covariate and N = 2 states, Figure 8
illustrates how the state-dependent smooth regression functions are built as linear combinations
of weighted B-splines. Fitting this model to the simulated data was again achieved by numerically
maximising the penalised log-likelihood. More details on inference in these classes of models is
provided in the subsequent section.

3.4 | Inference

3.4.1 | Direct numerical maximum penalised likelihood

Likelihood evaluation inMarkov-switching regressionmodels, either parametric or nonparametric, is
performed using the forward algorithm, completely analogous as in case of HMMs. In particular, the
forward recursion, and ultimately the calculation of the likelihood of aMarkov-switching regression
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F IGURE 8 True state-dependent regression functions (solid lines) and state-dependent
regression functions estimated using linear combinations of weighted B-splines (dashed lines). The
thin dashed lines display the contributions of the individual B-spline basis functions to the estimators
of the regression functions.

model, proceed exactly as in (2) and (3), respectively, where now

P(yt ) = diag(fN (
η(1)(xt ),σ(1)

) (yt ), . . . , fN (
η(N )(xt ),σ(N )

) (yt )),
using the notation fN(µ,σ) to denote the density of a normal distributionwithmean µ and standard
deviation σ .

Again analogously as in case of nonparametric HMMs, the log-likelihood of the nonparametric
Markov-switching regressionmodel ismodified by including a difference penalty, one for each smooth
function to be estimated:

lpen = log L −
N∑
i=1

P∑
p=1

λi p

2

K∑
k=3

(∆2ωi ,p,k )
2 .

Second-order differences are appealing here since the basic linear Markov-switching regression
model is then recovered as λi p →∞ [i , p , as the penalty then suppresses any nonlinear effects of the
ωi ,p,k .

Generally, the penalised maximum likelihood estimate obtained will reflect a compromise be-
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tween goodness of fit and smoothness, respectively, with the smoothing parameters λi p , i = 1, . . . ,N ,
p = 1, . . . , P , controlling the wiggliness of the smooth terms. Smoothing parameter selection can be
conducted using cross-validation techniques or model selection criteria (see Section 2.4.1).

3.4.2 | Estimation using the EM algorithm

Alternatively, maximum penalised likelihood estimates for state-switching regression models can
be obtained via the EM algorithm. As in the case of state-switching density models, the idea is to
maximise the CDPLL. The likelihood structure is identical to that in case of state-switching density
models, such that the likelihood differs only in the specific form of state-dependent distributions,
fi (yt ):

lc,pen =
N∑
i=1

ui (1) log(δi ) +
N∑
i=1

N∑
j=1

T∑
t=2

vi j (t ) log(γi j ) +
N∑
i=1

T∑
t=1

ui (t ) log
(
f
N
(
η(i )(xt ),σ(i )

) (yt ))
−

N∑
i=1

P∑
p=1

λi p

2

K∑
k=3

(∆2ωi ,p,k )
2 .

The E step again involves calculating the conditional expectations of the ui (t ) and vi j (t ), respectively,
given the data and the current parameter estimates, which is completely analogous as described in
Section 2.4.2.

TheM step involves themaximization of the CDPLLwith respect to themodel parameters, the
first two steps of which— i.e. themaximisationwith respect to δi and γi j , i , j = 1, . . . ,N —proceed
exactly as described in Section 2.4.2. The third step, i.e. themaximisationwith respect to theωi ,p,k ,
reduces to a standard regression problemwith weighted observations, since the last two terms in
the CDPLL (the only terms which depend on the ωi ,p,k ) are equivalent to the weighted penalised
log-likelihood of a standard regressionmodel, where (for each state i ) the contribution of the t -th
observation to the log-likelihood is weighted by the current value of ui (t ). For given values of the λi p ,
this part of theM step can therefore be conducted using penalisedweighted least squares estimation.
To avoid a computationally intensive grid search based on generalised cross-validation or information
criteria for selecting the λi p , we propose to estimate the λi p within eachM step, using the linearmixed
model representation of P-splines, proceeding in a similar way as outlined in Section 2.4.2 (see e.g.
Equation (13) in Kauermann, 2005, for details).

3.5 | Extension toMarkov-switching generalised additivemodels

It is completely straightforward, both in terms of themodel formulation and also regarding the asso-
ciated inferential techniques and implementation, to extendMarkov-switching regressionmodels as
discussed in Sections 3.1 (parametric case) and 3.3 (nonparametric case) tomodels with response
distributions other than the normal. In the nonparametric modelling framework, we assume that,
conditional on st and xt · ,Yt follows some distribution, e.g. from the exponential family, and specify
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themodel for themean as

g
(
Å(Yt )

)
= η(st )(xt ) = β (st )0 + f (st )1 (xt1) + f

(st )
2 (xt2) + . . . + f

(st )
P
(xt P ),

where g is some link function associated with the distribution considered, and where the smooth
functions f (i )p , i = 1, . . . ,N , p = 1, . . . , P , are modelled as linear combinations of a large number of
B-splines, with the associated weights being estimated. For distributions with additional dispersion
parameters, such as the normal or the gamma distribution, those are also modelled as dependent
on the state st . Likelihood evaluation and inference proceeds analogously as detailed in Section 3.4,
with the obvious changes to P(yt ) (see Langrock et al., 2017, for details). If the EM algorithm is used
for model fitting, efficient software which exploits the linear mixedmodel representation of P-splines
can be employed to estimate the λi p and ωi ,p,k in the M step, e.g. the gam function from the mgcv
package (Wood, 2017).

3.6 | Extension to Markov-switching generalised additive models for loca-
tion, scale and shape

Themodels from the previous section can be further extended by alsomodelling state-dependent
parameters of the response distribution beyond the mean, e.g. variance, skewness and kurtosis
parameters, but also zero inflation and other parameters, as smooth functions of a given set of
explanatory variables (Adam et al., 2017). Corresponding Markov-switching generalised additive
models for location, scale and shape (MS-GAMLSS) can for example account for heteroscedasticity
evenwithin states, as the variance parameter is assumed to be some function of the covariates rather
than being constant.

In anMS-GAMLSSwe assume that, conditionally on st and xt ,Yt follows some parametric dis-
tribution fst (yt , µ(st )t ,σ

(st )
t , ν

(st )
t , τ

(st )
t ) (which does not necessarily need to belong to the exponential

family), and specify amodel for each distribution parameter:

gµ (µ
(st )
t ) = η

(st )
µ (xt ) = β (st )µ0 + f (st )

µ1 (xt1) + f
(st )
µ2 (xt2) + · · · + f

(st )
µP
(xt P );

gσ (σ
(st )
t ) = η

(st )
σ (xt ) = β (st )σ0 + f (st )

σ1 (xt1) + f
(st )
σ2 (xt2) + · · · + f

(st )
σP
(xt P );

gν (ν
(st )
t ) = η

(st )
ν (xt ) = β

(st )
ν0 + f (st )

ν1 (xt1) + f
(st )
ν2 (xt2) + · · · + f

(st )
νP
(xt P );

gτ (τ
(st )
t ) = η

(st )
τ (xt ) = β (st )τ0 + f (st )

τ1 (xt1) + f
(st )
τ2 (xt2) + · · · + f

(st )
τP
(xt P ).

Likelihood evaluation and inference proceeds completely analogously as detailed in Section 3.4, with
the obvious changes to P(yt ) and the penalty term. In particular, we now require separate smoothing
parameters for each parameter of the distribution considered. Again, when using the EM algorithm,
we canmake use of available software for estimating the λi p andωi ,p,k in theM step, e.g. the gamlss
function from the package of the same name (Stasinopoulos et al., 2017).
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3.7 | Case study: Spanish energy prices

To illustrate the application of Markov-switching regression models, we model the relationship
between the daily average price of energy in Spain, yt , and the oil price, xt , over time. The data cover
all 1,761working days between February 1, 2002, andOctober 31, 2008 and are available in the R
packageMSwM (Sanchez-Espigares and Lopez-Moreno, 2014). Markov-switching regressionmodels
play an important role inmodelling financial time series data in general, and energymarket data in
particular, as observations are typically driven bymarket characteristics (states) that are not directly
observable (Huisman andMahieu, 2003; Eichler and Tuerk, 2013). In our example, for instance, it
seems plausible that the relationship between energy and oil price may vary across different market
regimes, e.g. recessions as opposed to periods of economic growth. Accounting for such regime shifts
is important for forecasts, as neglecting these features in themodel formulationmay lead to an over-
or underestimation of the energy prices.

To demonstrate potential advantages of a B-spline-based nonparametric model formulation, we
consider three different models. As a benchmarkmodel, we fitted a 2-stateMarkov-switching linear
model (MS-LIN) with state-dependent linear predictor η(st )(xt ) = β (st )0 + β (st )1 xt for the conditional
mean and state-dependent (constant) variance σ (st ). Additionally, we fitted a 2-state MS-GAM
with state-dependent nonlinear predictor η(st )(xt ) = β (st )0 + f (st )1 (xt ) for the conditional mean and
(constant) state-dependent variance σ (st ), assuming a normal distribution for the energy prices.
Finally, we fitted a 2-stateMS-GAMLSS, specifying state-dependent nonlinear predictors of the form
η(st )(xt ) = β

(st )
0 + f (st )1 (xt ) for both the conditional mean, µ(st )t , and the conditional variance, σ (st )t ,

hence allowing not only themean but also the variance to depend on xt . All models were fitted using
the EM algorithm, as described in Sections 3.4.2, 3.5 and 3.6.

The three models fitted to the data are illustrated in Figure 9. The left panels display the
state-dependent predictors for the conditional mean, and additionally several quantiles of the state-
dependent distributions of the responseYt , under the fitted models. The right panels display the
associated (locally) decoded time series of energy prices, indicating themost likely states at any time.
The diagonal entries of the t.p.m. were estimated as γ̂11 = 0.991 and γ̂22 = 0.990 (MS-LIN), γ̂11 = 0.991
and γ̂22 = 0.991 (MS-GAM) and γ̂11 = 0.994 and γ̂22 = 0.991 (MS-GAMLSS), respectively, indicating
strong persistencewithin the states and onlyminor differences in the state processes of the three
models fitted.

TheMS-LIN substantially overestimates the conditional mean particularly for high values of the
covariate xt , primarily due to the lack of flexibility of the state-dependent predictor. Furthermore,
both theMS-LIN and theMS-GAM substantially underestimate the variance for oil prices between
40 and 60 USD, where a considerable proportion of the observations lie above (below) the 0.95
(0.05) quantile of the fitted state-dependent distributions, while overestimating the variance for oil
prices greater than 70 USD, where almost all observations lie below (above) the 0.95 (0.05) quantile.
Thus, although theMS-GAM accurately captures the conditional mean, the overall distribution is not
completely modelled. This can be problematic if the interest lies not only in the conditional mean but
also in the conditional quantiles of the fitted state-dependent distributions, which is often the case
whenmodelling financial data. Bymodelling not only the conditional mean but also the conditional
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F IGURE 9 Plots on the left: estimated state-dependent predictors for the conditional mean
(solid lines) along with the 0.05, 0.15, 0.25, 0.75, 0.85 and 0.95 quantiles of the fitted state-dependent
distributions (dashed lines) and the (locally) decoded observations. In the case of theMS-GAMLSS,
the respective quantiles were computed using the estimated state-dependent predictors for the
conditional variance. Plots on the right: the corresponding (locally) decoded time series of energy
prices. Orange points and lines correspond to state 1, while green points and lines correspond to
state 2.

variance as functions of xt , theMS-GAMLSS is able to overcome these caveats of the simpler (nested)
modelsMS-LIN andMS-GAM.

At this point we ought to stress that while the goodness of fit of theMS-GAMLSS here is clearly
superior to that of the alternativemodels, there is undoubtedly some overfitting involved, and it is
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not at all clear if theMS-GAMLSS in the given settingwould perform best out of sample. For the given
time series, where we see only about 11-12 switches between the two regimes, a model as flexible
as theMS-GAMLSS is almost certainly overparameterised, i.e. too complex. Nevertheless, the case
study clearly demonstrates the appeal of being able to conduct such flexible modelling, even if in
practice the full flexibility of these classes of models should probably be exploited only if larger data
sets are available.

4 | DISCUSSION

Nonparametric inference— via P-splines as discussed in this paper or using other techniques, such
as kernels (see Piccardi and Perez, 2007) or smoothed histograms (as suggested in Eilers andMarx,
1996) — adds substantial modelling flexibility to state-switching density and regression models.
Corresponding models effectively enlarge the class of state-switching models, offering versatile
new tools for statistical modelling of time series data. Viewed from a different angle, thesemodels
extendwell-established nonparametric density and regressionmodels to scenarios with time series
structure, where regime shifts drive the serial correlation.

The increased flexibility does of course come at a cost: the necessity to select smoothing parame-
ters leads to a notable increase in the computational effort, and in addition the nonparametric model
formulations are numerically less stable than their parametric counterparts. Thus, while clearly
beneficial in some scenarios, one should always carefully consider if parametric models really are
insufficient before working with themore challengingmodels discussed in this paper.

Regarding the selection of smoothing parameters, there has been considerable effort spent in
the GAM literature on developing efficient schemes for estimating these; examples includeWood
(2004), Wood (2008), Wood (2011) and Wood et al. (2016). Adapting these procedures for the
state-switchingmodelling frameworks considered heremight prove fruitful. Taking amixed effects
view of themodel (as seen above for the EMfitting routine), where the penalties can be viewed as
prior precisionmatrices — potentially improper, though this can be remedied, see, e.g., Marra and
Wood (2011) — allows for fitting and inference using general-purposemodelling software such as
Stan (Carpenter et al., 2017) and TemplateModel Builder (Kristensen et al., 2016).
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