11 research outputs found

    HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection

    No full text
    Immune control of viral infections is heavily dependent on helper CD4(+) T cell function. However, the understanding of the contribution of HIV-specific CD4(+) T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4(+) T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4(+) T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4(+) T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4(+) T cells in HIV controllers than progressors (P = 0.0001), and these expanded Gag-specific CD4(+) T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control (r = −0.5, P = 0.02). These data identify an association between HIV-specific CD4(+) T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4(+) T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4(+) T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4(+) T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV infections worldwide. Understanding the contribution of HIV-specific CD4(+) T cell responses in clade C infection is particularly important for developing vaccines that would be efficacious in sub-Saharan Africa, where clade C infection is dominant. Here, we employed MHC class II tetramers designed to immunodominant Gag epitopes and used them to characterize CD4(+) T cell responses in HIV-1 clade C infection. Our results demonstrate an association between the frequency of HIV-specific CD4(+) T cell responses targeting an immunodominant DRB1*11-Gag41 complex and HIV control, highlighting the important contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infections

    Magnitude and Kinetics of CD8+ T Cell Activation during Hyperacute HIV Infection Impact Viral Set Point

    Get PDF
    CD8[superscript +] T cells contribute to the control of HIV, but it is not clear whether initial immune responses modulate the viral set point. We screened high-risk uninfected women twice a week for plasma HIV RNA and identified 12 hyperacute infections. Onset of viremia elicited a massive HIV-specific CD8[superscript +] T cell response, with limited bystander activation of non-HIV memory CD8[superscript +] T cells. HIV-specific CD8[superscript +] T cells secreted little interferon-Îł, underwent rapid apoptosis, and failed to upregulate the interleukin-7 receptor, known to be important for T cell survival. The rapidity to peak CD8[superscript +] T cell activation and the absolute magnitude of activation induced by the exponential rise in viremia were inversely correlated with set point viremia. These data indicate that rapid, high magnitude HIV-induced CD8[superscript +] T cell responses are crucial for subsequent immune control of acute infection, which has important implications for HIV vaccine design.Bill & Melinda Gates FoundationCollaboration for AIDS Vaccine DiscoveryWitten Family FoundationDan and Marjorie SullivanUrsula BrunnerGary and Loren CohenMark and Lisa Schwartz Foundation,International AIDS Vaccine Initiative (UKZNRSA1001)National Institute of Allergy and Infectious Diseases (U.S.) (R37AI067073)Center for AIDS Research (P30 AI060354

    Linkage Mapping of Stem Saccharification Digestibility in Rice

    Get PDF
    Rice is the staple food of almost half of the world population, and in excess 90% of it is grown and consumed in Asia, but the disposal of rice straw poses a problem for farmers, who often burn it in the fields, causing health and environmental problems. However, with increased focus on the development of sustainable biofuel production, rice straw has been recognized as a potential feedstock for non-food derived biofuel production. Currently, the commercial realization of rice as a biofuel feedstock is constrained by the high cost of industrial saccharification processes needed to release sugar for fermentation. This study is focused on the alteration of lignin content, and cell wall chemotypes and structures, and their effects on the saccharification potential of rice lignocellulosic biomass. A recombinant inbred lines (RILs) population derived from a cross between the lowland rice variety IR1552 and the upland rice variety Azucena with 271 molecular markers for quantitative trait SNP (QTS) analyses was used. After association analysis of 271 markers for saccharification potential, 1 locus and 4 pairs of epistatic loci were found to contribute to the enzymatic digestibility phenotype, and an inverse relationship between reducing sugar and lignin content in these recombinant inbred lines was identified. As a result of QTS analyses, several cell-wall associated candidate genes are proposed that may be useful for marker-assisted breeding and may aid breeders to produce potential high saccharification rice varieties

    Conformal Mappings in Relativistic Astrophysics

    No full text
    We describe the use of conformal mappings as a mathematical mechanism to obtain exact solutions of the Einstein field equations in general relativity. The behaviour of the spacetime geometry quantities is given under a conformal transformation, and the Einstein field equations are exhibited for a perfect fluid distribution matter configuration. The field equations are simplified and then exact static and nonstatic solutions are found. We investigate the solutions as candidates to represent realistic distributions of matter. In particular, we consider the positive definiteness of the energy density and pressure and the causality criterion, as well as the existence of a vanishing pressure hypersurface to mark the boundary of the astrophysical fluid

    Enhanced infection prophylaxis reduces mortality in severely immunosuppressed HIV-infected adults and older children initiating antiretroviral therapy in Kenya, Malawi, Uganda and Zimbabwe: the REALITY trial

    Get PDF
    Meeting abstract FRAB0101LB from 21st International AIDS Conference 18–22 July 2016, Durban, South Africa. Introduction: Mortality from infections is high in the first 6 months of antiretroviral therapy (ART) among HIV‐infected adults and children with advanced disease in sub‐Saharan Africa. Whether an enhanced package of infection prophylaxis at ART initiation would reduce mortality is unknown. Methods: The REALITY 2×2×2 factorial open‐label trial (ISRCTN43622374) randomized ART‐naïve HIV‐infected adults and children >5 years with CD4 <100 cells/mm3. This randomization compared initiating ART with enhanced prophylaxis (continuous cotrimoxazole plus 12 weeks isoniazid/pyridoxine (anti‐tuberculosis) and fluconazole (anti‐cryptococcal/candida), 5 days azithromycin (anti‐bacterial/protozoal) and single‐dose albendazole (anti‐helminth)), versus standard‐of‐care cotrimoxazole. Isoniazid/pyridoxine/cotrimoxazole was formulated as a scored fixed‐dose combination. Two other randomizations investigated 12‐week adjunctive raltegravir or supplementary food. The primary endpoint was 24‐week mortality. Results: 1805 eligible adults (n = 1733; 96.0%) and children/adolescents (n = 72; 4.0%) (median 36 years; 53.2% male) were randomized to enhanced (n = 906) or standard prophylaxis (n = 899) and followed for 48 weeks (3.8% loss‐to‐follow‐up). Median baseline CD4 was 36 cells/mm3 (IQR: 16–62) but 47.3% were WHO Stage 1/2. 80 (8.9%) enhanced versus 108(12.2%) standard prophylaxis died before 24 weeks (adjusted hazard ratio (aHR) = 0.73 (95% CI: 0.54–0.97) p = 0.03; Figure 1) and 98(11.0%) versus 127(14.4%) respectively died before 48 weeks (aHR = 0.75 (0.58–0.98) p = 0.04), with no evidence of interaction with the two other randomizations (p > 0.8). Enhanced prophylaxis significantly reduced incidence of tuberculosis (p = 0.02), cryptococcal disease (p = 0.01), oral/oesophageal candidiasis (p = 0.02), deaths of unknown cause (p = 0.02) and (marginally) hospitalisations (p = 0.06) but not presumed severe bacterial infections (p = 0.38). Serious and grade 4 adverse events were marginally less common with enhanced prophylaxis (p = 0.06). CD4 increases and VL suppression were similar between groups (p > 0.2). Conclusions: Enhanced infection prophylaxis at ART initiation reduces early mortality by 25% among HIV‐infected adults and children with advanced disease. The pill burden did not adversely affect VL suppression. Policy makers should consider adopting and implementing this low‐cost broad infection prevention package which could save 3.3 lives for every 100 individuals treated

    Advances and perspectives in discovery and functional analysis of small secreted proteins in plants

    No full text
    corecore