20 research outputs found

    Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model

    Get PDF
    AbstractSmall cell lung cancer (SCLC) is a highly aggressive human tumor with a more than 95% mortality rate. Its ontogeny and molecular pathogenesis remains poorly understood. We established a mouse model for neuroendocrine (NE) lung tumors by conditional inactivation of Rb1 and Trp53 in mouse lung epithelial cells. Mice carrying conditional alleles for both Rb1 and Trp53 developed with high incidence aggressive lung tumors with striking morphologic and immunophenotypic similarities to SCLC. Most of these tumors, which we designate MSCLC (murine small cell lung carcinoma), diffusely spread through the lung and gave rise to extrapulmonary metastases. In our model, inactivation of both Rb1 and p53 was a prerequisite for the pathogenesis of SCLC

    The effect of audit market structure on audit quality and audit pricing in the private-client market

    Get PDF
    This study examines whether audit market structure affects audit quality and audit pricing. We analyze two conceptually distinct dimensions of market structure: audit market concentration and client mobility. Focusing on the private-client segment of the Belgian audit market, we compare the pricing and quality effects of market structure between the segment of small and medium-sized (SME) clients and the segment of large clients to test how audit complexity moderates such effects. We find that market concentration impairs price and quality competition in the SME-client segment. Market concentration is unrelated to audit quality in the large-client segment, where we argue that concentration is endogenous to audit complexity. Furthermore, we find that client mobility stimulates price competition in both segments but improves audit quality only in the large-client segment. We interpret our findings as evidence that (a) audit market concentration impairs competition especially when audits have low complexity and that (b) the large-client market segment, characterized by higher audit complexity and higher market concentration, can also be price and quality competitive if clients are sufficiently mobile, and change auditors relatively frequently

    Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (SNP) discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies of paralogous sequences and therefore resulted in a high rate of false positive SNP identification. Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to generate data from a reduced representation library constructed with genomic DNA pooled from 96 unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture (NCCCWA) broodstock population.</p> <p>Results</p> <p>The reduced representation library consisted of 440 bp fragments resulting from complete digestion with the restriction enzyme <it>Hae</it>III; sequencing produced 2,000,000 reads providing an average 6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends). Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627 independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three analyses were genotyped on individual fish to determine the validation rate of putative SNPs among analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome, examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map. Approximately 48% (183) of the putative SNPs were validated; 167 markers were successfully incorporated into the rainbow trout linkage map. In addition, 2% of the sequences from the validated markers were associated with rainbow trout transcripts.</p> <p>Conclusion</p> <p>The use of reduced representation libraries and pyrosequencing technology proved to be an effective strategy for the discovery of a high number of putative SNPs in rainbow trout; however, modifications to the technique to decrease the false discovery rate resulting from the evolutionary recent genome duplication would be desirable.</p

    The Role of MicroRNAs in Biological Processes

    No full text
    MicroRNAs (miRNAs) are tiny regulators of gene expression on the posttranscriptional level. Since the discovery of the first miRNA 20 years ago, thousands of them have been described. The discovered miRNAs have regulatory functions in biological and pathological processes. Biologically, miRNAs have been implicated in development, differentiation, proliferation, apoptosis, and immune responses. In this work, we summarize the role of miRNA in biological processes taking into account the various areas named above

    Inflammation in Parkinson's Disease

    No full text
    Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Inflammatory responses manifested by glial reactions, T cell infiltration, and increased expression of inflammatory cytokines, as well as other toxic mediators derived from activated glial cells, are currently recognized as prominent features of PD. The consistent findings obtained by various animal models of PD suggest that neuroinflammation is an important contributor to the pathogenesis of the disease and may further propel the progressive loss of nigral dopaminergic neurons. Furthermore, although it may not be the primary cause of PD, additional epidemiological, genetic, pharmacological, and imaging evidence support the proposal that inflammatory processes in this specific brain region are crucial for disease progression. Recent in vitro studies, however, have suggested that activation of microglia and subsequently astrocytes via mediators released by injured dopaminergic neurons is involved. However, additional in vivo experiments are needed for a deeper understanding of the mechanisms involved in PD pathogenesis. Further insight on the mechanisms of inflammation in PD will help to further develop alternative therapeutic strategies that will specifically and temporally target inflammatory processes without abrogating the potential benefits derived by neuroinflammation, such as tissue restoration

    The Role of MicroRNAs in Human Diseases

    No full text
    About 20 years have passed since the discovery of the first microRNA (miRNA) and by now microRNAs are implicated in a variety of physiological and pathological processes. Since the discovery of the powerful effect miRNAs have on biological processes, it has been suggested that mutations affecting miRNA function may play a role in the pathogenesis of human diseases. Over the past several years microRNAs have been found to play a major role in various human diseases. In addition, many studies aim to apply miRNAs for diagnostic and therapeutic applications in human diseases. In this chapter, we summarize the role of miRNAs in pathological processes and discuss how miRNAs could be used as disease biomarkers

    Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues.

    No full text
    International audienceLigand-activated Cre recombinases are widely used for studying gene function in vitro and in conditional mouse models. To compare ligand-dependent Cre recombinases, different Cre estrogen receptor fusions were introduced into the ROSA26 locus of embryonic stem (ES) cells and assayed for genotoxicity and recombination efficiency. Of the tested recombinases, the CreERT2 variant showed no toxicity and was highly responsive to ligand induction. To constitutively express CreERT2 in mice and also to clarify whether the CreERT2 system displays background activity, we generated a knock-in mouse line harboring the CreERT2 coding region under the control of the ROSA26 locus. Analysis of this ROSA26-CreERT2 deleter mouse with different reporter strains revealed ubiquitous recombination in the embryo and partial recombination in peripheral and hematopoietic tissues but no effective CreERT2 expression in the brain. Furthermore, using flow cytometry, we found low-level background recombination in noninduced bitransgenic ROSA26-CreERT2/EGFP reporter mice. To determine whether background activity poses a general problem for conducting conditional in vivo experiments with the ROSA26-CreERT2 deleter, we used a sensitive conditional skin cancer model. In this assay, cancer induction was completely restricted to induced bitransgenic CreERT2/K-Ras(V12) mice, whereas noninduced control animals did not show any sign of cancer, indicating the usefulness of the ROSA-CreERT2 system for regulating conditional gene expression in vivo. The ROSA26-CreERT2 deleter strain will be a convenient experimental tool for studying gene function under circumstances requiring partial induction of recombination in peripheral tissues and will be useful for uncovering previously unknown or unsuspected phenotypes
    corecore