26 research outputs found

    Shared detection of Porphyromonas gingivalis in cohabiting family members: a systematic review and meta-analysis

    Get PDF
    Introduction: Periodontitis is an inflammatory dysbiotic disease. Among putative dysbiosis causes, transmission of Porphyromonas gingivalis between individuals of the same family remains unclear. The aim of this systematic review and meta-analysis is to assess the likelihood of shared detection of Porphyromonas gingivalis among cohabiting family members. Methods: A literature search?was conducted on different databases up to September 2018. Articles assessing the presence of P.gingivalis between members of the same family were screened. Only English literature was retrieved, whereas no limits were applied for bacterial sampling and detection methods. Results: Overall, 26 articles published between 1993 and 2017 met the inclusion criteria. Of these, 18 articles were used for meta-analyses. Based on bacterial culture, the likelihood of an intra-familial transmission of P.gingivalis once a member of the family harbors the bacterium is estimated at 63.5% (n = 132 pairs of family members); this drops to 45% when pooling together culture and Polymerase-Chain-Reaction (n = 481 pairs), whereas it is estimated at 35.7% when genotyping is applied (n = 137 pairs). Conclusion: Pooled results suggest that the likelihood of detecting P.gingivalis within within family members is moderately frequent. Personalized periodontal screening and prevention may consider intra-familial co-occurrence of P.gingivalis as feasible

    INVOLVEMENT OF RESPIRATORY CHAIN IN BIOFILM FORMATION IN PORPHYROMONAS GINGIVALIS

    Get PDF
    Oral Communication presented at the ";Forum des Jeunes Chercheurs";, Brest (France) 2011

    The oral microbiome – an update for oral healthcare professionals

    Get PDF
    For millions of years, our resident microbes have coevolved and coexisted with us in a mostly harmonious symbiotic relationship. We are not distinct entities from our microbiome, but together we form a 'superorganism' or holobiont, with the microbiome playing a significant role in our physiology and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral microbiome and gained new insights into its role during both health and disease. Perturbations of the oral microbiome through modern-day lifestyles can have detrimental consequences for our general and oral health. In dysbiosis, the finely-tuned equilibrium of the oral ecosystem is disrupted, allowing disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current knowledge of the oral microbiome in health and disease and to discuss implications for modern-day oral healthcare

    Recent advances in studies of polymicrobial interactions in oral biofilms

    Get PDF
    The oral cavity supports a complex and finely balanced consortium of microbial species, many of which cooperate within structured biofilms. These communities develop through multitudinous synergistic and antagonistic interspecies relationships. Changes in the dynamics of oral microbial populations are associated with the transition from healthy teeth and gums to dental caries, gingivitis and periodontitis. Understanding the ecology of oral biofilm communities, and how different species communicate within a given host, will inform new strategies for treatment and prevention of oral diseases. Advances in sequencing technologies have fuelled an increasing trend towards global genomic and proteomic approaches to determine the key factors that initiate oral diseases. Whilst metabolic profiling seeks to identify phenotypic changes of whole microbial communities, transcriptomic studies are exploring their complex interactions with each other and the host. This review discusses the most recent in vitro and in vivo studies of interspecies interactions within polymicrobial oral biofilms

    Shared detection of Porphyromonas gingivalis in cohabiting family members a systematic review and meta-analysis

    No full text
    International audienceIntroduction: Periodontitis is an inflammatory dysbiotic disease. Among putative dysbiosis causes, transmission of Porphyromonas gingivalis between individuals of the same family remains unclear. The aim of this systematic review and meta-analysis is to assess the likelihood of shared detection of Porphyromonas gingivalis among cohabiting family members.Methods: A literature search was conducted on different databases up to September 2018. Articles assessing the presence of P.gingivalis between members of the same family were screened. Only English literature was retrieved, whereas no limits were applied for bacterial sampling and detection methods.Results: Overall, 26 articles published between 1993 and 2017 met the inclusion criteria. Of these, 18 articles were used for meta-analyses. Based on bacterial culture, the likelihood of an intra-familial transmission of P.gingivalis once a member of the family harbors the bacterium is estimated at 63.5% (n = 132 pairs of family members); this drops to 45% when pooling together culture and Polymerase-Chain-Reaction (n = 481 pairs), whereas it is estimated at 35.7% when genotyping is applied (n = 137 pairs).Conclusion: Pooled results suggest that the likelihood of detecting P.gingivalis within within family members is moderately frequent. Personalized periodontal screening and prevention may consider intra-familial co-occurrence of P.gingivalis as feasible

    Oral sedation in dentistry: evaluation of professional practice of oral hydroxyzine in the University Hospital of Rennes, France

    No full text
    International audiencePURPOSE: Management of a child’s anxiety early in their treatment is essential in dentistry. Sedative medications are used to overcome increased anxiety from previous appointments and to promote the cooperation of children during treatment. Hydroxyzine is currently prescribed to young patients as part of the first level of conscious sedation. The main objective was to evaluate the professional practice of oral hydroxyzine, when prescribed for children presenting anxiety during dental treatment procedure performed by students and senior practitioners. METHODS: A retrospective study of dental records and questionnaires was conducted at the Dental Care Centre of the University Hospital of Rennes, France. Parameters related to the prescription of hydroxyzine in children were evaluated as potential predictors of the dental session success, with adjustments on potential confounders. RESULTS: The therapeutic outcome was very encouraging with 78.3% of success during dental sessions under sedation with oral hydroxyzine. Anxiety levels before the dental procedure and the medication compliance of the child were the main predictors of success. On the other hand, lower age (< 6 years old) and longer treatments (such as pulpotomy) worsened the outcome. CONCLUSIONS: Careful analysis of the literature and results of this work showed the safety of hydroxyzine within the maximum dose authorized without adverse effects, compared to other molecules described and commonly used in dentistry. No adverse effects during dental procedure were noted. This allows for minimal sedation with efficiency for the great majority of pediatric treatment. This solution should be the first step in sedation to help practicing clinicians

    Propeptide-Mediated Inhibition of Cognate Gingipain Proteinases

    Get PDF
    Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis. The organism's cell-surface cysteine proteinases, the Arg-specific proteinases (RgpA, RgpB) and the Lys-specific proteinase (Kgp), which are known as gingipains have been implicated as major virulence factors. All three gingipain precursors contain a propeptide of around 200 amino acids in length that is removed during maturation. The aim of this study was to characterize the inhibitory potential of the Kgp and RgpB propeptides against the mature cognate enzymes. Mature Kgp was obtained from P. gingivalis mutant ECR368, which produces a recombinant Kgp with an ABM1 motif deleted from the catalytic domain (rKgp) that enables the otherwise membrane bound enzyme to dissociate from adhesins and be released. Mature RgpB was obtained from P. gingivalis HG66. Recombinant propeptides of Kgp and RgpB were produced in Escherichia coli and purified using nickel-affinity chromatography. The Kgp and RgpB propeptides displayed non-competitive inhibition kinetics with K(i) values of 2.04 µM and 12 nM, respectively. Both propeptides exhibited selectivity towards their cognate proteinase. The specificity of both propeptides was demonstrated by their inability to inhibit caspase-3, a closely related cysteine protease, and papain that also has a relatively long propeptide. Both propeptides at 100 mg/L caused a 50% reduction of P. gingivalis growth in a protein-based medium. In summary, this study demonstrates that gingipain propeptides are capable of inhibiting their mature cognate proteinases
    corecore