19 research outputs found
Recommended from our members
GGDML: icosahedral models language extensions
The optimization opportunities of a code base are not completely exploited by compilers. In fact, there are optimizations that must be done within the source code. Hence, if the code developers skip some details, some performance is lost. Thus, the use of a general-purpose language to develop a performance-demanding software -e.g. climate models- needs more care from the developers. They should take into account hardware details of the target machine.
Besides, writing a high-performance code for one machine will have a lower performance on another one. The developers usually write multiple optimized sections or even code versions for the different target machines. Such codes are complex and hard to maintain.
In this article we introduce a higher-level code development approach, where we develop a set of extensions to the language that is used to write a model’s code. Our extensions form a domain-specific language (DSL) that abstracts domain concepts and leaves the lower level details to a configurable source-to-source translation process.
The purpose of the developed extensions is to support the icosahedral climate/atmospheric model development. We have started with the three icosahedral models: DYNAMICO, ICON, and NICAM. The collaboration with the scientists from the weather/climate sciences enabled agreed-upon extensions. When we have suggested an extension we kept in mind that it represents a higher-level domain-based concept, and that it carries no lower-level details.
The introduced DSL (GGDML- General Grid Definition and Manipulation Language) hides optimization details like memory layout. It reduces code size of a model to less than one third its original size in terms of lines of code. The development costs of a model with GGDML are therefore reduced significantly
DYNAMICO and XIOS source code with configuration files to run DCMIP2016 test cases
DYNAMICO and XIOS source code with configuration files to run DCMIP2016 test cases.
See updated versions at :
http://forge.ipsl.jussieu.fr/dynamico/
http://forge.ipsl.jussieu.fr/ioserver/
DYNAMICO and XIOS are distributed under the Cecill open-source software license : http://www.cecill.info
Conservative interpolation between general spherical meshes
International audienceAn efficient, local, explicit, second-order, conservative interpolation algorithm between spherical meshes is presented. The cells composing the source and target meshes may be either spherical polygons or latitude–longitude quadrilaterals. Second-order accuracy is obtained by piece-wise linear finite-volume reconstruction over the source mesh. Global conservation is achieved through the introduction of a supermesh, whose cells are all possible intersections of source and target cells. Areas and intersections are computed exactly to yield a geometrically exact method. The main efficiency bottleneck caused by the construction of the supermesh is overcome by adopting tree-based data structures and algorithms, from which the mesh connectivity can also be deduced efficiently.The theoretical second-order accuracy is verified using a smooth test function and pairs of meshes commonly used for atmospheric modelling. Experiments confirm that the most expensive operations, especially the supermesh construction, have O(NlogN) computational cost. The method presented is meant to be incorporated in pre- or post-processing atmospheric modelling pipelines, or directly into models for flexible input/output. It could also serve as a basis for conservative coupling between model components, e.g., atmosphere and ocean
Tropical cyclones in global high-resolution simulations using the IPSL model
International audienceAbstract Despite many years of extensive research, the evolution of Tropical Cyclone (TC) activity in our changing climate remains uncertain. This is partly because the answer to that question relies primarily on climate simulations with horizontal resolutions of a few tens of kilometers. Such simulations have only recently become accessible for most modeling centers, including the Institut Pierre-Simon Laplace (IPSL). Using recent numerical developments in the IPSL model, we perform a series of historical atmospheric-only simulations that follow the HighResMIP protocol. We assess the impact of increasing the resolution from ∼ 200 to 25 km on TC activity. In agreement with previous work, we find a systematic improvement of TC activity with increasing resolution with respect to the observations. However, a clear signature of TC frequencies convergence with resolution is still lacking. Cyclogenesis geographical distributions also improve at the scale of individual basins. This is particularly true of the North Atlantic, where the agreement with the observed distribution is impressive at 25 km. In agreement with the observations, TC activity correlates with the large-scale environment and ENSO in that basin. By contrast, TC frequencies remain too small in the Western North Pacific at 25 km, where significant biases of humidity and vorticity are found compared to the reanalysis. Despite the few minor weaknesses we identified, our results demonstrate that the IPSL model is a suitable tool for studying TCs on climate time scales. This work thus opens the way for further studies contributing to our understanding of TC climatology
An exploration of Saturn's stratospheric dynamics through Global Climate Modeling
International audienc
Jets, eddies & waves in Saturn's troposphere and stratosphere from multi-annual high-resolution Global Climate Modeling
International audienc
Jets, eddies & waves in Saturn's troposphere and stratosphere from multi-annual high-resolution Global Climate Modeling
International audienc
An exploration of Saturn's stratospheric dynamics through Global Climate Modeling
International audienc
An exploration of Saturn's stratospheric dynamics through Global Climate Modeling
International audienc
Jets, eddies & waves in Saturn's troposphere and stratosphere from multi-annual high-resolution Global Climate Modeling
International audienc