5,678 research outputs found

    A new method of correcting radial velocity time series for inhomogeneous convection

    Full text link
    Magnetic activity strongly impacts stellar RVs and the search for small planets. We showed previously that in the solar case it induces RV variations with an amplitude over the cycle on the order of 8 m/s, with signals on short and long timescales. The major component is the inhibition of the convective blueshift due to plages. We explore a new approach to correct for this major component of stellar radial velocities in the case of solar-type stars. The convective blueshift depends on line depths; we use this property to develop a method that will characterize the amplitude of this effect and to correct for this RV component. We build realistic RV time series corresponding to RVs computed using different sets of lines, including lines in different depth ranges. We characterize the performance of the method used to reconstruct the signal without the convective component and the detection limits derived from the residuals. We identified a set of lines which, combined with a global set of lines, allows us to reconstruct the convective component with a good precision and to correct for it. For the full temporal sampling, the power in the range 100-500~d significantly decreased, by a factor of 100 for a RV noise below 30 cm/s. We also studied the impact of noise contributions other than the photon noise, which lead to uncertainties on the RV computation, as well as the impact of the temporal sampling. We found that these other sources of noise do not greatly alter the quality of the correction, although they need a better noise level to reach a similar performance level. A very good correction of the convective component can be achieved providing very good RV noise levels combined with a very good instrumental stability and realistic granulation noise. Under the conditions considered in this paper, detection limits at 480~d lower than 1 MEarth could be achieved for RV noise below 15 cm/s.Comment: Accepted in A&A 18 July 201

    Spontaneous polarization and piezoelectricity in boron nitride nanotubes

    Full text link
    Ab initio calculations of the spontaneous polarization and piezoelectric properties of boron nitride nanotubes show that they are excellent piezoelectric systems with response values larger than those of piezoelectric polymers. The intrinsic chiral symmetry of the nanotubes induces an exact cancellation of the total spontaneous polarization in ideal, isolated nanotubes of arbitrary indices. Breaking of this symmetry by inter-tube interaction or elastic deformations induces spontaneous polarization comparable to those of wurtzite semiconductors.Comment: 5 pages in PRB double column format, 3 figure

    Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars

    Full text link
    In solar-type stars, the attenuation of convective blueshift by stellar magnetic activity dominates the RV variations over the low amplitude signal induced by low mass planets. Models of stars that differ from the Sun will require a good knowledge of the attenuation of the convective blueshift to estimate its impact on the variations. It is therefore crucial to precisely determine not only the amplitude of the convective blueshift for different types of stars, but also the dependence of this convective blueshift on magnetic activity, as these are key factors in our model producing the RV. We studied a sample of main sequence stars with spectral types from G0 to K2 and focused on their temporally averaged properties: the activity level and a criterion allowing to characterise the amplitude of the convective blueshift. We find the differential velocity shifts of spectral lines due to convection to depend on the spectral type, the wavelength (this dependence is correlated with the Teff and activity level), and on the activity level. This allows us to quantify the dependence of granulation properties on magnetic activity for stars other than the Sun. The attenuation factor of the convective blueshift appears to be constant over the considered range of spectral types. We derive a convective blueshift which decreases towards lower temperatures, with a trend in close agreement with models for Teff lower than 5800 K, but with a significantly larger global amplitude. We finally compare the observed RV variation amplitudes with those that could be derived from our convective blueshift using a simple law and find a general agreement on the amplitude. Our results are consistent with previous results and provide, for the first time, an estimation of the convective blueshift as a function of Teff, magnetic activity, and wavelength, over a large sample of G and K main sequence stars

    First-principles study of high conductance DNA sequencing with carbon nanotube electrodes

    Full text link
    Rapid and cost-effective DNA sequencing at the single nucleotide level might be achieved by measuring a transverse electronic current as single-stranded DNA is pulled through a nano-sized pore. In order to enhance the electronic coupling between the nucleotides and the electrodes and hence the current signals, we employ a pair of single-walled close-ended (6,6) carbon nanotubes (CNTs) as electrodes. We then investigate the electron transport properties of nucleotides sandwiched between such electrodes by using first-principles quantum transport theory. In particular we consider the extreme case where the separation between the electrodes is the smallest possible that still allows the DNA translocation. The benzene-like ring at the end cap of the CNT can strongly couple with the nucleobases and therefore both reduce conformational fluctuations and significantly improve the conductance. The optimal molecular configurations, at which the nucleotides strongly couple to the CNTs, and which yield the largest transmission, are first identified. Then the electronic structures and the electron transport of these optimal configurations are analyzed. The typical tunneling currents are of the order of 50 nA for voltages up to 1 V. At higher bias, where resonant transport through the molecular states is possible, the current is of the order of several μ\muA. Below 1 V the currents associated to the different nucleotides are consistently distinguishable, with adenine having the largest current, guanine the second-largest, cytosine the third and finally thymine the smallest. We further calculate the transmission coefficient profiles as the nucleotides are dragged along the DNA translocation path and investigate the effects of configurational variations. Based on these results we propose a DNA sequencing protocol combining three possible data analysis strategies.Comment: 12 pages, 17 figures, 3 table

    Non-universal transmission phase behaviour of a large quantum dot

    Full text link
    The electron wave function experiences a phase modification at coherent transmission through a quantum dot. This transmission phase undergoes a characteristic shift of π\pi when scanning through a Coulomb-blockade resonance. Between successive resonances either a transmission phase lapse of π\pi or a phase plateau is theoretically expected to occur depending on the parity of the corresponding quantum dot states. Despite considerable experimental effort, this transmission phase behaviour has remained elusive for a large quantum dot. Here we report on transmission phase measurements across such a large quantum dot hosting hundreds of electrons. Using an original electron two-path interferometer to scan the transmission phase along fourteen successive resonances, we observe both phase lapses and plateaus. Additionally, we demonstrate that quantum dot deformation alters the sequence of transmission phase lapses and plateaus via parity modifications of the involved quantum dot states. Our findings set a milestone towards a comprehensive understanding of the transmission phase of quantum dots.Comment: Main paper: 18 pages, 5 figures, Supplementary materials: 8 pages, 4 figure

    Entanglement of a Mesoscopic Field with an Atom induced by Photon Graininess in a Cavity

    Get PDF
    We observe that a mesoscopic field made of several tens of microwave photons exhibits quantum features when interacting with a single Rydberg atom in a high-Q cavity. The field is split into two components whose phases differ by an angle inversely proportional to the square root of the average photon number. The field and the atomic dipole are phase-entangled. These manifestations of photon graininess vanish at the classical limit. This experiment opens the way to studies of large Schrodinger cat states at the quantum-classical boundary

    Dynamic reconfiguration of human brain networks during learning

    Get PDF
    Human learning is a complex phenomenon requiring flexibility to adapt existing brain function and precision in selecting new neurophysiological activities to drive desired behavior. These two attributes -- flexibility and selection -- must operate over multiple temporal scales as performance of a skill changes from being slow and challenging to being fast and automatic. Such selective adaptability is naturally provided by modular structure, which plays a critical role in evolution, development, and optimal network function. Using functional connectivity measurements of brain activity acquired from initial training through mastery of a simple motor skill, we explore the role of modularity in human learning by identifying dynamic changes of modular organization spanning multiple temporal scales. Our results indicate that flexibility, which we measure by the allegiance of nodes to modules, in one experimental session predicts the relative amount of learning in a future session. We also develop a general statistical framework for the identification of modular architectures in evolving systems, which is broadly applicable to disciplines where network adaptability is crucial to the understanding of system performance.Comment: Main Text: 19 pages, 4 figures Supplementary Materials: 34 pages, 4 figures, 3 table

    Quantum Flexoelectricity in Low Dimensional Systems

    Full text link
    Symmetry breaking at surfaces and interfaces and the capability to support large strain gradients in nanoscale systems enable new forms of electromechanical coupling. Here we introduce the concept of quantum flexoelectricity, a phenomenon that is manifested when the mechanical deformation of non-polar quantum systems results in the emergence of net dipole moments and hence linear electromechanical coupling proportional to local curvature. The concept is illustrated in carbon systems, including polyacetylene and nano graphitic ribbons. Using density functional theory calculations for systems made of up to 400 atoms, we determine the flexoelectric coefficients to be of the order of ~ 0.1 e, in agreement with the prediction of linear theory. The implications of quantum flexoelectricity on electromechanical device applications, and physics of carbon based materials are discussed.Comment: 15 pages, 3 figure

    Empirical scaling of antisymmetric stratified wakes

    No full text
    Proceedings of the "Bluff Body Wakes and Vortex-Induced Vibrations - BBVIV-4"Initially turbulent wakes of a propelled cylinder at nonzero angles of yaw to the mean flow were measured in the horizontal centerplane plane up to approximately 100 buoyancy times, where vertical velocities are very small. The profiles of mean velocity were found to be antisymmetric throughout their lifetime, with both width and maximum velocity decaying at the same rate as previously studied momentum wakes. The maximum velocity of the profile is proportional to the angle of yaw, but the width is constant. Both the mean flow and fluctuating quantities show that the late wake is self-similar, with scaling laws that are consistent with previous work on propelled and drag wakes
    corecore