380 research outputs found

    Similarity measures and algorithms for cartographic schematization

    Get PDF

    Area-preserving C-oriented schematization

    Get PDF
    We define an edge-move operation for polygons and prove that every simple non-convex polygon P has a non-conflicting pair of complementary edge-moves that reduces the number of edges of P while preserving its area. We use this result to generate area-preserving C-oriented schematizations of polygons

    Four Soviets walk the dog, with an application to Alt's conjecture

    Get PDF
    Given two polygonal curves in the plane, there are several ways to define a measure of similarity between them. One measure that has been extremely popular in the past is the Frechet distance. Since it has been proposed by Alt and Godau in 1992, many variants and extensions have been described. However, even 20 years later, the original O(n^2 log n) algorithm by Alt and Godau for computing the Frechet distance remains the state of the art (here n denotes the number of vertices on each curve). This has led Helmut Alt to conjecture that the associated decision problem is 3SUM-hard. In recent work, Agarwal et al. show how to break the quadratic barrier for the discrete version of the Frechet distance, where we consider sequences of points instead of polygonal curves. Building on their work, we give an algorithm to compute the Frechet distance between two polygonal curves in time O(n^2 (log n)^(1/2) (\log\log n)^(3/2)) on a pointer machine and in time O(n^2 (loglog n)^2) on a word RAM. Furthermore, we show that there exists an algebraic decision tree for the Frechet problem of depth O(n^(2-epsilon)), for some epsilon > 0. This provides evidence that computing the Frechet distance may not be 3SUM-hard after all and reveals an intriguing new aspect of this well-studied problem

    Four Soviets walk the dog, with an application to Alt's conjecture

    Get PDF
    Given two polygonal curves in the plane, there are many ways to define a notion of similarity between them. One measure that is extremely popular is the Fréchet distance. Since it has been proposed by Alt and Godau in 1992, many variants and extensions have been studied. Nonetheless, even more than 20 years later, the original O(n^2 log n) algorithm by Alt and Godau for computing the Fréchet distance remains the state of the art (here n denotes the number of vertices on each curve). This has led Helmut Alt to conjecture that the associated decision problem is 3SUM-hard.In recent work, Agarwal et al. show how to break the quadratic barrier for the discrete version of the Fréchet distance, where one considers sequences of points instead of polygonal curves. Building on their work, we give a randomized algorithm to compute the Fréchet distance between two polygonal curves in time O(n^2 \sqrt log n (log log n)^{3/2}) on a pointer machine and in time O(n^2 (log log n)^2) on a word RAM. Furthermore, we show that there exists an algebraic decision tree for the decision problem of depth O(n^{2¿}), for some ¿ > 0. This provides evidence that the decision problem may not be 3SUM-hard after all and reveals an intriguing new aspect of this well-studied problem

    A framework for algorithm stability

    Get PDF
    We say that an algorithm is stable if small changes in the input result in small changes in the output. Algorithm stability plays an important role when analyzing and visualizing time-varying data. However, so far, there are only few theoretical results on the stability of algorithms, possibly due to a lack of theoretical analysis tools. In this paper we present a framework for analyzing the stability of algorithms. We focus in particular on the tradeoff between the stability of an algorithm and the quality of the solution it computes. Our framework allows for three types of stability analysis with increasing degrees of complexity: event stability, topological stability, and Lipschitz stability. We demonstrate the use of our stability framework by applying it to kinetic Euclidean minimum spanning trees

    Mapping polygons to the grid with small Hausdorff and Fréchet distance

    Get PDF
    We show how to represent a simple polygon P by a grid (pixel-based) polygon Q that is simple and whose Hausdorff or Fréchet distance to P is small. For any simple polygon P, a grid polygon exists with constant Hausdorff distance between their boundaries and their interiors. Moreover, we show that with a realistic input assumption we can also realize constant Fréchet distance between the boundaries. We present algorithms accompanying these constructions, heuristics to improve their output while keeping the distance bounds, and experiments to assess the output
    • …
    corecore