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Area-Preserving C-Oriented Schematization∗

Kevin Buchin† Wouter Meulemans† Bettina Speckmann†

Abstract

We define an edge-move operation for polygons and
prove that every simple non-convex polygon P has
a non-conflicting pair of complementary edge-moves
that reduces the number of edges of P while pre-
serving its area. We use this result to generate area-
preserving C-oriented schematizations of polygons.

1 Introduction

A schematic map displays a set of nodes and their
connections—for example, highway, train, or metro
networks—in a highly simplified form to communicate
the connectivity information as effectively as possible.
Connections are usually drawn as polygonal paths us-
ing few links and few orientations. The set of permis-
sible orientations often contains only the two axis-
parallel or the four main orientations. The most gen-
eral setting is C-oriented schematization where every
link has to use one of a set C of specified orientations.
A substantial part of previous efforts concentrates

on the schematization of networks, but it is also often
desirable to schematize the boundaries of regions or
even complete subdivisions. Whenever exact bound-
aries are not needed it is preferable to replace them
by schematic ones, to reduce visual clutter and to in-
dicate that the map is not a topographic map.
The schematized output should visually resemble

the input. But it is not clear how to quantify what
the most recognizable schematization of a given input
is. Optimization based on standard distance metrics
can produce undesirable output for certain input poly-
gons [8]. Hence we focus on area-preserving schema-
tization, that is, the area of the input polygon and its
schematization are equivalent. While we do not prove
any guarantees on the resulting shapes, experimental
results are quite promising and visually pleasing.

Figure 1: Complementary edge-moves.
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Figure 2: Hexagonal Great Britain using 50 edges;
octagonal Vietnam using 15 edges.

Results. We introduce an edge-move operation that
moves an edge of a polygon inward or outward with-
out changing its orientation. This does change the
length of its adjacent edges and potentially itself. A
contraction is an edge-move that reduces at least one
edge to length zero, hereby reducing the number of
edges in the polygon. Since we desire area preserva-
tion, we apply this operation in non-conflicting com-
plementary pairs (Figure 1). Theorem 1, our main
result, is an immediate consequence of Lemma 6:

Theorem 1 Every simple non-convex polygon has
a non-conflicting pair of complementary edge-moves,
one of which is a contraction.

As edge-moves do not introduce new orientations, we
can also use edge-moves to create area-preserving C-
oriented schematizations of polygons. Note that a
simple polygon can be converted into a simple C-
oriented polygon of equal area based on the method
presented by Meulemans et al. [8].

Corollary 2 Given a simple C-oriented polygon P
and an integer k with 2|C| ≤ k, an area-preserving
C-oriented schematization of P with at most k edges
can be generated using only non-conflicting pairs of
complementary edge-moves.

The results in Figure 2 were obtained by repeat-
edly executing a non-conflicting pair of complemen-
tary edge-moves such that the contraction minimizes
the area change and the compensating edge-move is as
close by as possible. This method can also be used for
simple subdivisions restricted to edge-moves that do
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not change the topology. Our algorithm then ensures
that each face preserves its area and that adjacencies
are correct. In this case we cannot give any guarantees
on the reduction in the number of edges. Preliminary
experiments suggest that the reduction is significant.

Related work. There is an ample body of work on
map schematization and metro map construction, see
the surveys by Swan et al. [10] and Wolff [11] for an
overview. Of particular interest is the work by Mer-
rick and Gudmundsson [7] who describe an algorithm
to generate C-oriented metro map layouts. Methods
for map schematization can be used to schematize
subdivisions, but they usually do not take criteria
such as shape and size preservation into account.
The generalization of urban data, specifically build-

ing generalization, is closely related to our work. In
particular, algorithms for building wall squaring [6]
and outline simplification [5] can be used for polygon
schematization and vice versa.
Line simplification has been a prominent topic in

the GIS literature for many years. Of particular rele-
vance are the work of Delling et al. [3] and Neyer [9]
dealing with C-oriented schematization of routes or
lines and the work of Bose et al. [1] on area-preserving
line simplification. However, it is generally not advis-
able to schematize each chain in a subdivision sepa-
rately. There are some approaches, developed in com-
putational geometry, that preserve the topology of the
input subdivision. For example, De Berg et al. [2] de-
scribe a method that simplifies a polygonal subdivi-
sion without introducing intersections or passing over
special input points. Unfortunately many subdivision
simplification problems that minimize the number of
edges in the output are NP-complete [4].

2 Edge-moves and configurations

Definitions and notation. We are given a simple poly-
gon P with vertices v1, . . . , vn. We treat the vertices
modulo n, e.g. vn+1 = v1. The edges are denoted
by e1, . . . , en, again treated circularly. The directed
edge ei starts at vertex vi and ends at vertex vi+1. A
vertex is called convex if the angle inside the polygon
between its two adjacent edges is at most π, and it
is called reflex otherwise. We call an edge convex or
reflex if both its vertices are convex or reflex respec-
tively. The exterior angle of a vertex is defined as
the angle between one edge and the extension of the
other. The exterior angle is sometimes also referred
to as turning angle. The angle is negative if and only
if the vertex is reflex. The sum of all exterior angles
of a simple polygon is always equal to 2π.
We define a chain S as a set of at least three consec-

utive edges of P . Its edges are denoted by s1, . . . , sm
with m ≤ n. Its vertices are denoted by u1, . . . , um+1

and edge si is directed from ui to ui+1. The edges

Figure 3: A positive and negative exterior angle.

s1 and sm are the outer edges of S, the other edges
are its inner edges. Likewise, u1 and um+1 are outer
vertices, the other vertices inner vertices. By α(S),
we denote the sum of the exterior angles of the inner
vertices of S. A lid is an open line segment between a
point on s1 and a point on sm and is fully contained
in the interior of P . If S has any lid, it is a closable
chain. If the open line segment (u1, um+1) is a lid,
S is a proper chain. For a closable chain S and a lid
l, we denote by Rl(S) the region enclosed by S and
l. For a proper chain, R(S) denotes this region us-
ing the lid (u1, um+1) implicitly. Due to the lid, we
know that for every closable chain, any point on the
boundary of P that is inside Rl(S) must be part of S.
For any closable chain, α(S) > 0 holds. A (not neces-
sarily closable) chain with exactly 3 edges is called a
configuration G, its edges denoted by g1, g2, and g3.
The outer edges of a configuration G define two

tracks, infinite lines through the edges. An edge-move
on G moves g2 such that its orientation is preserved
and its vertices are on the tracks, making the outer
edges longer or shorter. An edge-move is valid if at
least one of its vertices remains on its original outer
edge and g2 remains on the same side of or on the
intersection point of the tracks (if any). An edge-move
which causes one of the edges of G to reach length
zero, is a contraction. Contractions are extremal edge-
moves. An edge-move is positive if it adds area to P
and negative if it removes area.
A configuration supports edge-moves, either posi-

tive, negative or both. Let g+2 denote the extremal
position of g2 after any valid positive edge-move, i.e.
the position after a positive contraction. The positive
contraction region of a positive configuration, R+(G),
is the region enclosed by g2, g

+
2 , and the tracks. A fea-

sible positive configuration is a configuration for which
R+(G) is empty except for G. Similarly, we define the
negative contraction region R−(G) and a feasible neg-
ative configuration. If a positive or negative configu-
ration is feasible, then any valid positive or negative
edge-move respectively is feasible. If a positive config-
uration is infeasible, then there is some point on δP in
R+(G)\G. A point in δP ∩R+(G)\G that is closest to

R−

R+

Figure 4: A valid positive edge-move.
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Figure 5: Configurations G and blocking points p.

the line through g2 is called a positive blocking point.
Analogously, G can have a negative blocking point. If
the inner edge of an infeasible G is convex or reflex,
there is always a blocking point that is a vertex of P .

Since we desire an approach that preserves the area
of the polygon, we combine two complementary fea-
sible configurations, one positive and one negative,
executing an edge-move on both simultaneously. The
one with the smaller contraction region is contracted,
while the other is moved just far enough to compen-
sate for the area change. Two configurations conflict
when they share an edge, unless they share only outer
edges and one of these has a convex and a reflex ver-
tex. In this special case the two edge-moves both ei-
ther shorten or lengthen the shared edge. We call two
non-conflicting complementary feasible configurations
a proper configuration pair.

Completeness. We now prove that any non-convex
polygon has a proper configuration pair. First we dis-
cuss some properties of a closable or proper chain.

Lemma 3 If S is a closable chain without a convex
inner edge and s2 is reflex, then S has a feasible neg-
ative configuration G with a reflex first inner vertex,
α(G) > 0 and R−(G) ⊆ Rl(S) for any lid l of S.

Proof. As α(S) > 0 and there are no convex inner
edges, there must a configuration G� in S with a reflex
first inner vertex and α(G�) > 0 (implying that the
second inner vertex is convex). LetG� be the first such
configuration. A configuration G�� with α(G��) > 0
and a convex first inner vertex may occur multiple
times before G�, but it must always be preceded by an
edge g��0 with α({g��0}∪G��) < 0 for the chain {g��0}∪G��

as otherwise G� is not the first of its kind along S.

Figure 6: Configurations with α > 0 and a reflex first
inner vertex.

We prove this lemma by induction. Assume that
m = 3. Chain S is a configuration G� with a reflex
first inner vertex. Any lid l of S must be on one side of
the line through s1, whereas this track enforces a tri-
angular contraction region on the other side. Hence,
R−(G�) ⊆ Rl(S) holds and G� is a feasible negative

configuration. Examples 1, 3 and 5 in Figure 6 show
closable chains, the other examples do not.
For induction, assume that this lemma holds for

any closable chain with less than m edges and with
a reflex first inner vertex. Let G� = si−1sisi+1 be
the first configuration with α(G�) > 0 where ui is
reflex. If G� is feasible, we are done. If G� is not fea-
sible, let p denote the corresponding blocking point.
Note that p must be part of S as R−(G�) ⊆ Rl(S) for
any lid l. Moreover, p must come after si+1 on S as
otherwise G� cannot be the first. The closable chain
S� = si+1, . . . , p (that is, until the edge containing p if
p is not a vertex) has less edges than S and thus has
a feasible negative configuration by induction. �

Lemma 4 If a proper chain S has a convex inner
edge, then S has a feasible negative configuration G
with R−(G) ⊆ R(S) and α(G) > 0. Also, g2 is convex
or starts at a reflex vertex or g2 �= sm−1.

Proof. We prove this lemma by induction on m. If
m = 3, S is a feasible negative configuration, since S is
a proper chain and s2 is a convex edge. For induction,
assume that this lemma holds for any suitable chain
with less than m edges. Let si be a convex inner edge.
Hence, G� = si−1sisi+1 is a negative configuration. If
G� is feasible, we are done as a convex edge implies
α(G�) > 0. If G� is not feasible, then let uj denote the
blocking vertex and assume without loss of generality
that i + 1 < j. Note that uj must be a vertex of the
chain as R−(G�) ⊆ R(S). Consider the proper chain
S� = si, . . . , sj−1. If S� has a convex inner edge, it
must have a feasible negative configuration by induc-
tion. However, if it does not, S�� = si+1, . . . , sj−1 is a
closable chain in which s�2 is reflex. Note that the di-
rection of S�� is reversed when j < i−1. By Lemma 3,
S�� has a feasible negative configuration G��. By the
lemma, the first inner vertex of G�� is reflex in the di-
rection of S��. If S�� was reversed, then sm /∈ S��, thus
sm−1 cannot be the inner edge of G��. �

Lemma 5 Every simple non-convex polygon P has a
feasible positive configuration G with α(G) < 0 or all
positive configurations are feasible.

Proof. If P has a reflex edge, then let G be a config-
uration with a reflex inner edge. If G is feasible, we
are done as α(G) < 0. If it is not, we can define a
chain S that is inverted: the interior of S is in fact the
exterior of the polygon. Using Lemma 3 or Lemma 4,
we can now find a feasible negative configuration G−

with α(G−) > 0 in S. This corresponds to a feasible
positive configuration G+ in P with α(G+) < 0.

If P has no reflex edge, then let G be an infeasible
positive configuration. If none exists, all positive con-
figurations are feasible. Otherwise we can define an
inverted chain using G. Thus, by Lemma 3, P has a
feasible positive configuration G� with α(G�) < 0. �
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Lemma 6 Every simple non-convex polygon P has a
proper configuration pair.

Proof. By Lemma 5, polygon P has a feasible posi-
tive configuration G+ = ei−1eiei+1. Assume without
loss of generality that the second inner vertex of G+,
vi+1, is reflex. Let vj denote the first convex vertex
after vi+1. Configuration G− = ej−1ejej+1 of which
vj is the first inner vertex, is negative. We distinguish
two cases.
Assume that G− is feasible. If no edge is shared or

if edge ei+1 = ej−1 is shared (having a convex and a
reflex vertex), we have a proper configuration pair. If
ei−1 = ej+1 is shared but the other outer edge is not,
then vj , vj+1 = vi−1, vi are the only convex vertices
in P and there is at least one edge in between ei and
ej−1. This edge is the inner edge of a feasible positive
configuration, one that does not conflict with G−.

ei ej ei ej ei ej

Figure 7: Three cases if G− is feasible.

Now, assume that G− is not feasible. The block-
ing point cannot be in between vi and vj+1. If G− is
blocked by a vertex vh, then, depending on the con-
vexity of vj+1 and vj+2, either Lemma 3 or Lemma 4
shows that there is a (non-conflicting) feasible nega-
tive configuration. If G− is blocked by an edge eh,
vj+1 must be reflex. We distinguish two cases on the
closable chain S = ej , . . . , eh.
If S does not have a convex inner edge, then we refer

to Lemma 3 to find a feasible negative configuration
G�. If G� does not conflict with G+, we are done. If
G� does conflict with G+, we know that eh = ei−1

holds and that eh−1 is the inner edge of G�. More-
over, it must now hold that α(G+) > 0 and thus, by
Lemma 5, we need to consider this case only when all
positive configurations are feasible. Hence, the pos-
itive configuration eiei+1ei+2 is feasible and it does
not conflict with G�.

ei
ej

G�

eh

ei
ej

eh
G�

Figure 8: Two cases if G− is not feasible and S has
no convex inner edge. G� may conflict with G+.

If S has a convex inner edge et, then let G� denote
the negative configuration et−1etet+1. If G� is feasi-
ble and not conflicting with G+, we are done. If G�

is feasible but conflicting with G+, we can argue as
above: eiei+1ei+2 is a feasible positive configuration
and it does not conflict with G�. If G� is not feasible,
then it must be blocked by some vertex vb. With-
out loss of generality, assume that the proper chain

S� = et, et+1, . . . , eb−1 does not contain edge ei. De-
pending on the convexity of vertex vt+2, Lemma 3 or
Lemma 4 shows that there is a feasible negative con-
figuration G�� in S�. We now argue why G�� cannot
conflict with G+. The only way to have a conflict is
when vb = vi. Since vi is then reflex, the only way to
obtain a conflict is when vi−1 is reflex as well and vi−2

is convex, such that ei−3ei−2ei−1 is a negative config-
uration. However, ei−2 is the before-last edge in S�

and starts at a convex vertex. Hence, Lemma 3 and
Lemma 4 guarantee to find another feasible negative
configuration instead. �
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