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Four Soviets Walk the Dog—with an Application to Alt’s

Conjecture

Kevin Buchin A Maike Buchin A Wouter Meulemans A Wolfgang Mulzer c

Abstract

Given two polygonal curves in the plane, there are several ways to define a measure of similarity between
them. One measure that has been extremely popular in the past is the Fréchet distance. Since it has been
proposed by Alt and Godau in 1992, many variants and extensions have been described. However, even 20
years later, the original O(n2 logn) algorithm by Alt and Godau for computing the Fréchet distance remains
the state of the art (here n denotes the number of vertices on each curve). This has led Helmut Alt to
conjecture that the associated decision problem is 3SUM-hard.

In recent work, Agarwal et al. show how to break the quadratic barrier for the discrete version of
the Fréchet distance, where we consider sequences of points instead of polygonal curves. Building on
their work, we give an algorithm to compute the Fréchet distance between two polygonal curves in time
O(n2

√
logn(log log n)3/2) on a pointer machine and in time O(n2(log logn)2) on a word RAM. Furthermore,

we show that there exists an algebraic decision tree for the Fréchet problem of depth O(n2−ε), for some
ε > 0. This provides evidence that computing the Fréchet distance may not be 3SUM-hard after all and
reveals an intriguing new aspect of this well-studied problem.

1 Introduction

Shape matching is a fundamental problem in computational geometry, computer vision, and image
processing. A simple version of the problem can be stated as follows: given a database D of shapes
(or images) and a query shape S, find the shape in D that most resembles S. Before we can solve
this problem, however, we first need to address a much more fundamental issue: what does it mean
for two shapes to be similar? In the mathematical literature, there are many different notions of
distance between two sets, a prominent example being the Hausdorff distance.

The Hausdorff distance has the advantage that it is easy to describe and to compute. How-
ever, the Fréchet distance better captures the similarity of shapes as perceived by human ob-
servers [4], since unlike the Hausdorff distance, it takes the continuity of the shapes into account.
This motivated Alt and Godau to study the Fréchet distance, and they describe an O(n2 log n)
time algorithm to compute it on a real RAM/pointer machine [6]. Since their seminal paper,
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there has been a wealth of research in various directions, such as extensions to higher dimen-
sions [5, 17, 19, 21, 24, 32], approximation algorithms [7, 8, 29], locally correct matchings [16], and
much more [2, 18, 22, 25, 26, 28, 34, 36–38]. The Fréchet distance and its variants like dynamic
time-warping [10] have been used in various applications, with recent work particularly focusing
on geographic applications such as map-matching tracking data [11,41] and moving objects analy-
sis [13, 14,33].

Despite the reams of published research, the original algorithm by Alt and Godau has not
been improved, and the quadratic barrier on the running time of the decision problem remains
unbroken. If despite many efforts we fail to improve on a quadratic running time bound for a
geometric problem, a possible culprit may be the underlying 3SUM-hardness [31]. This situation
induced Helmut Alt to make the following conjecture [4].

Conjecture 1.1 (Alt’s Conjecture). Let P and Q be two polygonal curves in the plane. Then
it is 3SUM-hard to decide whether the Fréchet distance between P and Q is at most 1.

Here, 1 is an arbitrary constant, which by scaling the curves can be changed to any other
bound. The only non-trivial known lower bound known for this problem is an Ω(n log n) bound in
the algebraic computation tree model [15].

Recently, Agarwal et al. [1] showed how to achieve a subquadratic running time for the discrete
version of the Fréchet distance. Their approach is based on precomputing small parts of the solution.
We follow a similar approach based on the so-called Four-Russian-trick which precomputes small
recurring parts of the solution and uses table-lookup to speed up the whole computation.1 Their
result is stated in the word RAM model of computation. They ask whether their result can be
generalized to the case of the original (continuous) Fréchet distance.

Our contribution. We address the question by Agarwal et al. and show how to extend their
approach in order to compute the Fréchet distance between two polygonal curves in total time
O(n2

√
log n(log log n)3/2). This is the first algorithm to achieve a running time of o(n2 log n) and

constitutes the first improvement for the general case since the original paper by Alt and Godau [6].
We emphasize that our algorithm runs on a real RAM/pointer machine and does not require any
bit manipulation tricks to achieve the speedup. If we relax the model to allow constant time table-
lookups, the running time can be improved to be almost quadratic, up to O(log log n) factors. As in
Agarwal et al., our results are achieved by first giving a faster algorithm for the decision version, and
then performing an appropriate search over the critical values to solve the optimization problem.

In addition, we show that non-uniformly, the Fréchet distance can be computed in subquadratic
time. More precisely, we prove that there exists an algebraic decision tree [9] for the decision version
of the problem with depth O(n2−ε) for some fixed ε > 0. This makes it unlikely that the Fréchet
distance is 3SUM-hard, since it is conjectured that no such decision tree exists for 3SUM [3].
However, it is not clear how to implement this decision tree in subquadratic time, which hints at
a discrepancy between the decision tree and the uniform complexity of the Fréchet problem and
puts into the illustrious company of such notorious problems as Sorting X + Y [30], Min-Plus-

Convolution [12], or finding the Delaunay triangulation for a point set that has been sorted in
two orthogonal directions [20]. We find that this aspect of the Fréchet distance is highly intriguing
and deserves further study.

1 Since it is well known that the four Russians are not actually Russian, we refer to them as four Soviets in the
title.
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2 Preliminaries and Basic Definitions

Let P and Q be two polygonal curves in the plane, defined by their vertices p0, p1, . . . , pn and
q0, q1, . . . , qn.

2 Depending on the context, we will interpret P and Q either as sequences of n edges,
or as continuous functions P,Q : [0, n] → R

2. In the latter case, we have P (i+λ) = (1−λ)pi+λpi+1

for i = 0, . . . , n − 1 and λ ∈ [0, 1], and similarly for Q. Let Ψ be the set of all continuous and
nondecreasing functions σ : [0, n] → [0, n] with σ(0) = 0 and σ(n) = n. The Fréchet distance
between P and Q is defined as

dF (P,Q) := inf
σ∈Ψ

max
x∈[0,n]

‖P (x)−Q(σ(x))‖,

where ‖ · ‖ denotes the usual Euclidean distance.

The free-space diagram. The classic approach to compute dF (P,Q) uses the free-space diagram
FSD(P,Q). It is defined as

FSD(P,Q) := {(x, y) ∈ [0, n]2 | ‖P (x)−Q(y)‖ ≤ 1},

i.e., FSD(P,Q) is the subset of the joint parameter space for P and Q where the corresponding
points on the curves have distance at most 1. The structure of FSD(P,Q) is easy to describe: let
R := [0, n]2 be the ground set. We subdivide R into n2 cells C(i, j) = [i − 1, i] × [j − 1, j], for
i, j = 1, . . . , n. The cell C(i, j) corresponds to the edge pair ei and fj, where ei is the ith edge of
P and fj is the jth edge of Q. Then FSD(P,Q) ∩ C(i, j) represents all pairs of points on ei × fj
with distance at most 1. Elementary geometry shows that FSD(P,Q) ∩ C(i, j) is the intersection
of C(i, j) with an ellipse. In particular, FSD(P,Q) ∩ C(i, j) is convex, and the intersection of
FSD(P,Q) with the boundary of C(i, j) consists of four (possibly empty) intervals, one on each
side of ∂C(i, j). We call these intervals the doors of C(i, j) in FSD(P,Q).

A path in FSD(P,Q) is bimonotone if it is both x- and y-monotone. Alt and Godau observed
that it suffices to determine whether there exists a bimonotone path from (0, 0) to (n, n) inside
FSD(P,Q). More precisely, set

reach(P,Q) := {p ∈ FSD(P,Q) | p is reachable from (0, 0) in FSD(P,Q) on a bimonotone path.}

Then dF (P,Q) ≤ 1 if and only if (n, n) ∈ reach(P,Q). It is not necessary to compute all of
reach(P,Q): since FSD(P,Q) is convex inside each cell, we actually just need the intersections
reach(P,Q) ∩ ∂C(i, j). These intersections are subintervals of the doors of the free-space diagram,
and they can be found in O(n2) time through a simple traversal of the cells [6].

3 Building a lookup table.

Before even considering the input, our algorithm builds a lookup table. The purpose of this table
is to speed up the computation of small parts of the free-space diagram.

Let τ be a parameter, and let S = [0, τ ]2. (A preview for the impatient reader: we will later
set τ =

√
log n/ log log n). As in the free-space diagram, we subdivide S into τ2 cells D(i, j) :=

2 For simplicity, we assume that both curves have the same number of vertices. This constitutes the most interesting
case from a theoretical point of view, and it is straightforward to extend our results to the case when the number of
vertices on the two curves differs.
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[i − 1, i] × [j − 1, j], for i, j = 1, . . . , τ . We denote the left side of the boundary ∂D(i, j) by l(i, j)
and the bottom side by b(i, j). Note that l(i, j) coincides with the right side of ∂D(i − 1, j) and
that b(i, j) coincides with the top of ∂D(i, j − 1). Thus, we write l(τ + 1, j) for the right side of
D(τ, j) and b(i, τ + 1) for the top side of D(i, τ), for i, j = 1, . . . , τ . We call the subdivision of S
into cells the elementary grid G. The rows and columns of G are defined in the obvious way.

Next, we define a signature for the elementary grid. Let Z = {s1, t1, . . . , sτ+1, tτ+1}, and let
SZ be the set of all permutations of Z. A signature for G consists of 2τ permutations from SZ ,
one permutation σc

i for each column i of G and one permutation σr
j for each row j of G. We write

x <c
i y if x comes before y in σc

i , and x <r
i y if x comes before y in σr

i .
The signature encodes the combinatorial structure of the doors in FSD(P,Q). Consider a row

j. The element si represents the lower endpoint of the door on l(i, j), and ti represents the upper
endpoint. The elements s1, t1 are an exception: they describe the interval in which reach(P,Q)
intersects l(1, j). The permutation σr

j then gives the relative order of the door endpoints. If ti <
r
j si,

this means that the ith door is closed, i.e., l(i, j) is disjoint from FSD(P,Q).
Given a signature, we can determine which door boundaries define the intervals in which

reach(P,Q) intersects the edges l(τ +1, j) and b(i, τ +1). This is done as follows: for each vertical
edge l(i, j) we define a variable u(i, j), and for each horizontal edge b(i, j) we define a variable
v(i, j). The u(i, j) are pairs of the form (sq, tr), meaning that reach(P,Q) ∩ l(i, j) is bounded by
the lower endpoint of the door on l(q, j) and the upper endpoint of the door on l(r, j), where again
s1 and t1 are special and actually represent the interval reach(P,Q)∩ l(1, j). If tr <

r
j sq, then l(i, j)

is not reachable. The variable v(i, j) are defined analogously.
The u(i, j) and v(i, j) can be computed recursively as follows: first, we set u(1, j) = v(i, 1) =

(s1, t1) for i, j = 1, . . . , τ . Next, we describe how to find u(i, j) given u(i − 1, j) and v(i − 1, j).
Write u(i − 1, j) = (su, tu) and v(i − 1, j) = (sv, tv). First suppose sv <c

i−1 tv. This means that
b(i − 1, j) intersects reach(P,Q), so reach(P,Q) ∩ l(i, j) is only limited by the door on l(i, j), and
we can set u(i, j) = (si, ti). On the other hand, if sv >c

i−1 tv, we cannot cross b(i, j), but must
come through l(i − 1, j). If tu < su holds, we also cannot come through l(i − 1, j), and therefore
also set u(i, j) = (su, tu). Otherwise, we will need to pass l(i, j) above su and si and below ti, and
therefore set u(i, j) = (max(su, si), ti), where the maximum is taken according to the order <r

i .
The recursion for the variable v(i, j) is defined similarly.

Now it is easy to see that we can find u(τ + 1, j) and v(i, τ + 1) in total time O(τ2), for any
given signature. Thus, we enumerate all possible ((2τ)!)2τ signatures and store the results in a
lookup table. This takes total time O(((2τ)!)2τ τ2) = τO(τ2).

4 Preprocessing for a given input

Next, we perform a second preprocessing phase that actually considers the input curves P and
Q. Our eventual goal is to compute the intersection of reach(P,Q) with the cell boundaries, while
taking advantage of our lookup tables. For this, we subdivide the cells of FSD(P,Q) into elementary
boxes of size τ2, in the obvious way. We can ignore rounding issues by either duplicating vertices
or handling a small part of FSD(P,Q) without lookup tables.

Eventually we need to determine the signature for each elementary box S. This is not quite
possible yet, because the full signature of S depends on the intersection of reach(P,Q) with the
lower and left boundary of S. However, we can find a partial signature, in which the position of
s1, t1 in the permutations σr

i , σ
c
j is still to be determined.
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We subdivide the columns of FSD(P,Q) into vertical strips, consisting of τ columns each. Let
A be such a strip. It corresponds to a subcurve P ′ of P with τ edges. Let s be a line segment
of Q. The partial signature of s is the permutation of Z \ {s1, t1} that is induced by the doors of
FSD(P,Q) in the row for s inside A.

Lemma 4.1. There exists a constant c, such that the following holds: given a subcurve P ′ with τ
vertices, we can compute in O(τ c) time a data structure that requires O(τ c) space and can determine
the partial signature of any line segment on Q in time O(log τ).

Proof. Consider the arrangement A of unit circles whose centers are the points in P ′. The partial
signature of a line segment s is determined by the intersections of ℓs with the arcs of A (and for a
circle not intersecting s by whether s lies inside or outside of the circle). Let ℓs be the line spanned
by line segment s. Let ℓsa be the line parallel to ℓs that lies above ℓs and has distance 1 from ℓs.
Let ℓsb be defined similarly, but below ℓs. Suppose we wiggle ℓs. Then the order of intersections
of ℓsa and the arcs of A only changes when ℓs moves over a vertex of A or if ℓs leaves or enters a
circle. The latter case corresponds to ℓsa or ℓsb moving over the center of a circle.

Let V be the set of all vertices of A, and let V ′ := V ∪ P ′. We compute the arrangement B of
the lines dual to V ′. The arrangement B has O(τ4) vertices. We build a point location structure
for B that is very similar to the structure by Dobkin and Lipton [27]. For this, we subdivide B into
strips by drawing a vertical line through each vertex of B. Call the resulting strip subdivision S.
There are O(τ4) strips, and each strip has O(τ2) cells.

Now, consider the triple φ(s) of cells in S that contain the dual points ℓ∗s, ℓ
∗

sa, and ℓ∗sb. The
cells in φ(s) lie in the same strip, and they completely determine the combinatorial structure of
the intersection between ℓs and A. Thus, for every triple φ of cells in a strip of S, we construct a
list Lφ that represents the combinatorial structure of ℓs ∩ A. There are O(τ4 · τ6) = O(τ10) such
lists, each having size O(τ). We can compute Lφ by traversing the zone of ℓs in A. Since unit
circles intersect at most twice and also a line intersects any unit circle at most twice, the zone has
complexity O(τ2α(τ)) ⊂ O(τ2), where α(·) denotes the inverse Ackermann function [39, Theorem
5.11]. Thus we can compute all lists in O(τ12) time.

Given the list Lφ(s), the partial signature of s is determined by the position of the endpoints of
s in Lφ(s). There are O(τ2) possible ways for this, and we build a table Tφ(s) that represents them.
For each entry in Tφ(s), we store an identifier for the corresponding partial signature.

The total size of the data structure is O(τ12) and it can be constructed in the same time. A
query takes O(log τ) steps: given s, we can compute ℓ∗s, ℓ

∗

sa and ℓ∗sb in constant time. Then we
perform repeated binary searches in S to determine φ(s). With an appropriate tree structure, we
can then find the list Lφ(s) in O(log τ) steps. The locations of the endpoints of s in Lφ(s) are found
with two more binary searches, and they are then used to look up the partial signature for s in the
table Tφ(s), again using binary search.

Using the data structure from the above lemma, we can determine the partial signature for each
row in each vertical τ -strip in total time proportional to

n

τ
(τ c + n log τ) = nτ c−1 +

n2 log τ

τ
.

We repeat the procedure with the horizontal strips. Now we know for each elementary box in
FSD(P,Q) the partial signature for each row and each column. Next we would like to put them
together to find the corresponding entry in our large lookup table. There are several ways to do
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this. One way uses table lookup and requires the word RAM, the other way works on the pointer
machine, but is a bit more involved.

Table Lookup. We organize the big lookup table from the previous section as a large tree. Each
level of the tree corresponds to a row or column of the elementary box, so there are 2τ levels. Each
node has (2τ)! children, representing the possible signatures for the next row or column. We will
choose τ so small that a signature can be represented by a single word. Thus, each node of the tree
can store an array for its children, and we can choose the appropriate child for a given elementary
box in constant time. Thus, to determine the partial signature for each elementary box requires
O(τ) steps in a word RAM, for a total of O(n2/τ).

Pointer Juggling. On a pointer machine, we are not allowed to store a lookup table on every
level of the tree. Instead, we have a record for each of the (2τ)! permutations of the set Z. The
signature of a row or column of an elementary box is represented by a pointer to the corresponding
record. We propagate the elementary boxes through the tree simultaneously, level by level. In the
first level, all elementary boxes are assigned to the root. Then, we go through the nodes of one
level of the tree, from left to right. We consider each elementary box assigned to the current node,
and put it in the bucket for the appropriate signature—the bucket is addressed through the record
that represents the permutation, so we use the same buckets for all nodes of the tree. Then we go
through the nodes of the next level. The boxes assigned to a node in the tree occur consecutively
in the corresponding bucket, and can be popped for the node and stored there. The total time for
this procedure is O(n2/τ2) for each level, plus the number of nodes in the tree. We choose τ such
that the tree has o(n) nodes, so the total time is again O(n2/τ).

As a consequence we obtain the following lemma.

Lemma 4.2. The partial signature for each elementary box can be determined in time O(nτ c−1 +
n2/τ).

5 Processing the Free Space Diagram

Lemma 5.1. If the partial signature for each elementary box is known, we can determine whether
(n, n) ∈ reach(P,Q) in time O(n2(log τ)/τ).

Proof. We go through the elementary boxes of FSD(P,Q), processing them one column at a time,
from bottom to top. Initially, for the box S in the lower left corner of FSD(P,Q), we know the
whole signature for S, and we can use the signature to determine the intersections of reach(P,Q)
with the upper and right boundary of S (the signature gives us the combinatorial structure, from
which we can find the actual intervals in total time O(τ)). Given that partial signatures of the
adjacent boxes, we can determine the full signature in total time O(τ log τ): we already have a
partial permutation for each row and column of the elementary box, and we only need to determine
the position of s1, t1 in this permutation. Given the actual values, we can figure this out in O(log τ)
steps using binary search. Thus, the complete signatures of the adjacent boxes can be determined
in total time O(τ log τ) per box, so the total time is O(n2(log τ)/τ), as claimed.

Theorem 5.2. The decision version of the Fréchet problem can be solved in time

O(n2(log log n)3/2/
√

log n)

on a pointer machine.
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Proof. Set τ := (1/100)
√

log n/ log log n, then τO(τ2) = o(n), so we can apply the above lemmas in
sequence.

6 An Improved Bound Using the Word RAM

We now sketch how the running time of our algorithm can be improved if our computational model
allows for constant time table-lookup. We will use the same τ as above.

We introduce a second level in the free-space diagram: a cluster is a collection of τ×τ elementary
boxes. Thus, a cluster corresponds to τ2 × τ2 boxes in FSD(P,Q). Fix a cluster C and let R be
a row of C. Similarly to before, the row R corresponds to a line segment e on Q and a subcurve
P ′ of P with τ2 elements. We associate with R an ordered set Z = 〈z1, z′1, z2, z′2, . . . , 2zτ2 , 2z′τ2〉 of
4τ2 elements. The zi elements represent the order in which the unit circles around the vertices of
P ′ intersect the line segment e, and the z′i elements are supposed to represent the positions of the
reach-intervals on the left boundary. where circles from before P ′ can intersect e. The extended
signature for a row R′ of an elementary box inside R consists of the subset of Z that corresponds to
the subsubcurve P ′′ of P ′ for R′ plus a permutation that represents the order of the doors inside R′,
as before. Since there are O(τ2τ ) relevant subsets of size τ , the number of signatures for R′ is still
τO(τ). We define the signatures for the columns analogously, and we concatenate the signatures to
obtain the signature for a whole elementary box. Hence, the total number of possible signatures
remains τO(τ2).

Now for each extended signature we build a lookup table as follows: the input is a word that
consists of 4τ fields that store the indices in Z of the incoming doors for the elementary box (2τ
fields for the left boundary and 2τ fields for the lower boundary). The output consists of a word
that represents the indices for the elements in Z that represent the output doors for the upper and
right boundary of the box. The input of the table consists of O(τ log τ) bits, so the size of the table
is τO(τ).

During the preprocessing for a given input P,Q, we increase the size of a strip to τ2, where
each strip now consists of τ substrips of τ elements. Lemma 4.1 still holds, with a larger constant
c. The data structure yields for a query segment a word that contains τ fields of length O(τ log τ),
each containing the partial signature for the corresponding row in an elementary box. The total
time for building all the data structures and processing all rows is thus O(n/τ2 (τ c + n log τ)) =
O(n2(log τ)/τ2). Now we need to put this information together in order to obtain the partial
signatures for the vertical sides of the elementary boxes. For this, we need the following lemma,
which can be found in Thorup [40].

Lemma 6.1. Let X be a sequence of τ words that contain τ fields each, so that X can be interpreted
as a τ × τ matrix. Then we can compute in time O(τ log τ) on a word RAM a sequence Y of τ
words with τ fields each that represents the transposition of X.

Proof (sketch). The algorithm uses a simple divide and conquer approach. The recursive algorithm
solves a more general problem: let X be a sequence of a words that represents a sequence M of
b a × a matrices, such that the i-th word in X contains the fields of the i-th row of each matrix
in M from left to right. Compute a sequence of words Y that represents the sequence M ′ of the
transposed matrices in M .

The recursion works as follows: if a = 1, there is nothing to be done. Otherwise, we split X
into the sequence X1 of the first a/2 words and the sequence X2 of the remaining words. X1 and
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X2 now represent a sequence of 2b (a/2) × (a/2) matrices, which we transpose recursively. After
the recursion, we put the (a/2)× (a/2) submatrices back together in the obvious way. To finish, we
need to transpose the off-diagonal submatrices. This can be done simultaneously for all matrices
in time O(a), by using appropriate bit-operations (or table lookup).

Hence, the running time obeys a recursion of the form T (a) = 2T (a/2) +O(a), which solves to
T (a) = O(a log a), as desired.

By applying the lemma to the words that represent τ consecutive rows in a strip, we can obtain
the vertical signature for each elementary box. This takes total time O((n/τ2) · (n/τ) · τ log τ) =
O(n2(log τ)/τ2). By repeating for the horizontal strips, and using an appropriate lookup table to
combine the vertical and horizontal partial signatures, we can thus obtain the signature for each
elementary box in total time O(n2(log τ)/τ2).

Finally, we describe how to perform the actual computation. We traverse the free-space diagram
cluster by cluster (recall that a cluster consists of τ × τ elementary boxes). The clusters are
processed column by column from left to right, and inside each column from the bottom to the top.
Before processing a cluster, we walk along the left and lower boundary of the cluster to determine
the incoming doors. This is done by performing a binary search for each box on the boundary,
and determining the appropriate elements z′i which correspond to the incoming doors. Using this
information, we can assemble to appropriate words that represent the incoming information for
each elementary box. Since there are n2/τ4 clusters, this step requires time O((n2/τ4)τ2 log τ) =
O(n2(log τ)/τ2). We then process the elementary boxes inside the cluster, in a similar fashion.
Now, however, we can process each elementary box in constant time through a single table lookup,
so the total time is O(n2/τ2). Hence, the total running time of our algorithm is O(n2(log τ)/(τ2)) =
O(n2(log log n)2/ log n), by our choice of τ = Θ(

√
log n/ log log n).

7 Decision Trees

Using the techniques from Agarwal et al. we can obtain the following theorem3.

Theorem 7.1. There exists an algebraic computation tree for the discrete Fréchet problem of depth
Õ(n3/2).

Proof. We first discuss the decision problem. For the discrete case, the analogue of the free-space
diagram is just a n × n boolean matrix M , where the bit in the i-th row and the j-th column
indicates whether the pair (pi, qj) can be reached from (p0, q0) through a sequence of legal Fréchet
moves.

We set τ =
√
n and subdivide the columns of M into strips of width τ , as above. Each strip

corresponds to a subsequence Q′ of τ points qj , and we compute the arrangement of unit disks with
centers in Q′. This takes time O(τ2). Then we locate each point of P in this arrangement, taking
time O(n log n). We do this for every strip, resulting in a total running time of Õ(n3/2), by our
choice of τ . As observed by Agarwal et al., the information we gain in this way suffices to complete
M without further comparisons on the input. Using the techniques from Agarwal et al., one can
then solve the optimization problem while losing only another log-factor, which is absorbed into
the Õ-notation.

We can prove an analogous statement for the continuous Fréchet distance.

3 The notation Õ(·) stands for O(·) up to logarithmic factors.
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Theorem 7.2. There exists an algebraic decision tree for the Fréchet problem (decision version)
of depth O(n2−ε).

Proof. The reason of our choice for τ was to keep the time for the first preprocessing polynomial. If
we only care about the depth of the associated decision tree, we can disregard the cost for building
the lookup tables, because those do not depend on the input. Thus, choosing τ = n1/12, we get a
depth of the decision tree of (assuming that c = 12)

n

n1/12
n+

n2 log n

n1/12
= O(n23/12 log n) = O(n2−ε).

This has the following consequence for Alt’s conjecture (assuming linear time reductions):

Corollary 7.3. If the decision version of the Fréchet problem is 3SUM-hard, then 3SUM has an
algebraic decision tree of depth O(n2−ε).

We leave it to the reader to judge the implications on the status of the conjecture.

8 Solving the Optimization Problem

The optimization version of the Fréchet problem, that is, computing the Fréchet distance, can be
done in O(n2 log n) time using parametric search with the decision version as a subroutine. We
showed that the decision problem can be solved in o(n2) time. This however does not directly
yield a faster algorithm for the optimization problem: If the running time of the decision problem
is T (n) steps, parametric search results in an O((T (n) + n2) log n) time algorithm [6]. There is
an alternative randomized algorithm by Raichel and Har-Peled [35], which however also runs in
O((T (n) + n2) log n) time. We will adapt this algorithm to speed up the optimization problem.

Before we do so, we recall that possible values of the Fréchet distance can be limited to a certain
set of critical values [6]:

1. The distance between a vertex of the one curve and a vertex of the other curve (vertex-
vertex),

2. The distance between a vertex of the one curve and an edge of the other curve (vertex-edge),

3. For two vertices of one curve and an edge of the other curve the distance between one of
the vertices and the intersection of e with the bisector of the two vertices (if this intersection
exists) (vertex-vertex-edge).

If we also include vertex-vertex-edge tuples with no intersection, we can sample a critical value
uniformly at random in constant time. The algorithm now works as follows (see Har-Peled and
Raichel [35] for more details): it first samples K = 4n2 critical values uniformly at random. Next
the algorithm finds the interval [a, b] with a and b being two critical values in the sample such that
the Fréchet distance lies in [a, b], and no other critical value of the sample lies in [a, b]. In the
original algorithm this is done by sorting the critical values and performing a binary search using
the decision version. By using median-finding instead, this step can be done in O(K + T (n) logK)
time. We note that the running time of this step could alternatively be reduced by picking a smaller
K.

9



Now, this atomic interval [a, b] of the sampled critical values with high probability only contains
a small number of the remaining critical values. More specifically, for K = 4n2 the probability that
the interval contains more than 2cn lnn critical values in bounded from above by 1/nc [35, Lemma
6.2].

The remainder of the algorithm first determines these critical values, then again sorts them and
performs a binary search. We note that with median-finding the last step, that is, excluding the
time to determine the critical values, takes O(K ′ + T (n) logK ′) time. Thus the crucial part is to
determine the K ′ critical values fast.

In O(n2) time we can check for any vertex-vertex and vertex-edge pair whether the corre-
sponding critical value lies in [a, b]. It remains to determine the critical values corresponding
to vertex-vertex-edge tuples. These critical values are determined by a variant of the standard
sweepline algorithm. For this take an edge e of P and the vertices of Q. The sweep starts with
circles of radius a around the vertices of Q and increases the radii until they reach b. During this
sweep the algorithm maintains the order in which the circle arcs intersect e. A critical value of
the vertex-vertex-edge type corresponds to the event that two different circles intersect e in the
same point. Next to these events the sweepline algorithm requires the following events: a circle
intersects e for the first time, or a circle intersects one of the vertices of e. Both of these event
types correspond to critical values involving e or a vertex of e. Thus if we perform such a sweep
for all edges of P (and similarly for the edges of Q), the total number of events will be O(K ′), thus
the overall running time of all sweeps ignoring the time for initialization is O(K ′ log n).

It remains to show that we can compute the initial order in which the circle arcs intersect e
fast. First compute the arrangement A of circles with radius a around the vertices of Q. This
can be done in O(n2) time [23]. We need to determine in which order the arcs of the circles
intersect e. We can determine the order of intersections by traversing in A the zone of the line ℓ
spanned by e. The time for the traversal can be bounded by the complexity of the zone. Using
that the circles pairwise intersect at most twice and the line intersects each circle also only twice,
the complexity of the zone can be bounded by O(n2α(n)) [39, Theorem 5.11]. Summing over all
edges e this adds a total of O(n22α(n)) to the running time. Thus the overall running time is
O(T (n) log(n)+n22α(n)+K ′ log n). The case that K ′ > 8n lnn happens with probability less than
1/n4, and also in this case K ′ is still in O(n3). Thus, this case adds o(1) to the expected running
time. The case K ′ ≤ 8n lnn adds O(n log2 n) to the expected running time. As a consequence we
obtain the following lemma.

Lemma 8.1. The Fréchet distance of two polygonal curves with n vertices each can be computed by
a randomized algorithm in O(n22α(n) + T (n) log n) expected time, where T (n) is the running time
for the decision problem

We plug in our new bound on T (n).

Theorem 8.2. The Fréchet distance of two polygonal curves with n vertices each can be computed
by a randomized algorithm in time O(n2

√
log n(log log n)3/2) on a pointer machine and in time

O(n2(log log n)2) on a word RAM.

9 Conclusion

In this paper we break the long-standing quadratic upper bound for the decision version of the
Fréchet problem. Moreover, we show that this problem has an algebraic decision tree of depth
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O(n2−ε), for some ε > 0 and where n is the number of vertices of the polygonal curves. This
strongly indicates that the problem is not 3SUM-hard after all. We show how our faster algorithm
for the decision version can be used for a faster algorithm to compute the Fréchet distance. If we
allow constant-time table-lookup, we obtain a running time in close reach of O(n2).

This leaves us with intriguing open research questions. Can we reduce the time needed for
the decision version to O(n2−ε), that is the bound we obtain from the algebraic decision tree?
Can we devise a quadratic or even subquadratic algorithm for the optimization version? Can we
devise such an algorithm on the word RAM, that is, with constant-time table-lookup? Or, on
the other hand, can we establish a connection between the Fréchet distance and other problems
which exhibit a discrepancy between the decision tree and the uniform complexity, such as, e.g.,
Min-Plus-Convolution?
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[21] M. Buchin. On the Computability of the Fréchet Distance Between Triangulated Surfaces. PhD
thesis, Free University Berlin, Institute of Computer Science, 2007.
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