45 research outputs found

    The transplant cohort of the German center for infection research (DZIF Tx-Cohort) : study design and baseline characteristics

    Get PDF
    Infectious complications are the major cause of morbidity and mortality after solid organ and stem cell transplantation. To better understand host and environmental factors associated with an increased risk of infection as well as the effect of infections on function and survival of transplanted organs, we established the DZIF Transplant Cohort, a multicentre prospective cohort study within the organizational structure of the German Center for Infection Research. At time of transplantation, heart-, kidney-, lung-, liver-, pancreas- and hematopoetic stem cell- transplanted patients are enrolled into the study. Follow-up visits are scheduled at 3, 6, 9, 12 months after transplantation, and annually thereafter; extracurricular visits are conducted in case of infectious complications. Comprehensive standard operating procedures, web-based data collection and monitoring tools as well as a state of the art biobanking concept for blood, purified PBMCs, urine, and faeces samples ensure high quality of data and biosample collection. By collecting detailed information on immunosuppressive medication, infectious complications, type of infectious agent and therapy, as well as by providing corresponding biosamples, the cohort will establish the foundation for a broad spectrum of studies in the field of infectious diseases and transplant medicine. By January 2020, baseline data and biosamples of about 1400 patients have been collected. We plan to recruit 3500 patients by 2023, and continue follow-up visits and the documentation of infectious events at least until 2025. Information about the DZIF Transplant Cohort is available at https://www.dzif.de/en/working-group/transplant-cohort

    Evaluation of the Impact of the Trivedi Effect® -Energy of Consciousness on the Structure and Isotopic Abundance Ratio of Magnesium Gluconate Using LC-MS and NMR Spectroscopy

    Get PDF
    Magnesium gluconate is a classical pharmaceutical/nutraceutical compound used as a magnesium ion source for the prevention and treatment of hypomagnesemia. The present study was aimed to investigate the effect of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on magnesium gluconate for the change in the structural properties and isotopic abundance ratio (PM+1/PM and PM+2/PM) using LC-MS and NMR spectroscopy. Magnesium gluconate was divided into two parts – one part was control, and another part was treated with The Trivedi Effect® - Biofield Energy Healing Treatment remotely by twenty renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. The LC-MS analysis of both the control and treated samples indicated the presence of mass of the protonated magnesium gluconate at m/z 415 at the retention time of 1.52 min and fragmentation pattern of the both sample were almost similar. The relative peak intensities of the fragment ions were significantly changed in the treated sample compared with the control sample. The proton and carbon signals for CH, CH2 and CO groups in the proton and carbon NMR spectra were observed almost similar for the control and the treated samples. The percentage change in the isotopic abundance ratio of PM+1/PM (2H/1H or 13C/12C or 17O/16O or 25Mg/24Mg) was significantly decreased in the treated sample by 17.51% compared with the control sample. Consequently, the isotopic abundance ratio of PM+2/PM (18O/16O or 26Mg/24Mg) in the treated sample was significantly increased by 79.44% compared to the control sample. Briefly, 13C, 2H, 17O, and 25Mg contributions from (C12H23MgO14)+ to m/z 416; 18O and 26Mg contributions from (C12H23MgO14)+ to m/z 417 in treated sample were significantly altered compared with the control sample. Thus, The Trivedi Effect® Treated magnesium gluconate might be supportive to design the novel potent enzyme inhibitors using its kinetic isotope effects. Consequently, The Trivedi Effect® Treated magnesium gluconate would be valuable for designing better pharmaceutical and/or nutraceutical formulations through its changed physicochemical and thermal properties, which might be providing better therapeutic response against various diseases such as diabetes mellitus, allergy, aging, inflammatory diseases, immunological disorders, and other chronic infections. Source: https://www.trivedieffect.com/science/evaluation-of-the-impact-of-the-trivedi-effect-energy-of-consciousness-on-the-structure-and-isotopic-abundance-ratio-of-magnesium-gluconate-using-lc-ms-and-nmr-spectroscopy http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=655&doi=10.11648/j.ajbls.20170501.1

    Evaluation of the Physicochemical, Structural, Thermal, and Behavioral Properties of the Energy of Consciousness Healing Treated Zinc Chloride

    Get PDF
    Zinc chloride is a source of zinc used in various pharmaceutical/nutraceutical formulations. The objective of the current study was to investigate the impact of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Treatment) on physical, structural, thermal, and behavioral properties of zinc chloride using PXRD, PSD, FT-IR, UV-vis, and DSC analysis. Zinc chloride was divided into two parts – one part was control, while another part was treated with The Trivedi Effect® remotely by twenty renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. A significant alteration of the crystallite size and relative intensities of the PXRD peaks was observed in The Trivedi Effect® treated sample compared with the control sample. The average crystallite size of the treated sample was significantly increased by 23.18% compared with the control sample. The particle size values at d10, d50, and d90 values were significantly decreased by 3.70%, 4.13%, and 6.13%, respectively in the treated sample compared with the control sample. Therefore, the surface area of the treated sample was increased by 4.21% compared with the control sample. The FT-IR spectroscopic analysis revealed that Zn-Cl stretching in the control sample was found at 512 cm-1, whereas it was significantly shifted upward to 520 cm-1 in the treated sample. The UV-vis analysis exhibited that wavelength of the maximum absorbance (λmax) of the control and treated samples were at 197.6 nm and 197.1 nm, respectively. The DSC analysis exhibited that the melting temperature was decreased by 0.22%, while decomposition temperature was increased by 2.56% in the treated sample compared to the control sample. The latent heat of fusion of the treated sample (320.44 J/g) was significantly decreased by 16.70% compared with the control sample (284.67 J/g). Similarly, the enthalpy of decomposition of the treated sample (952.53 J/g) was significantly increased by 122.61% compared with the control sample (427.90 J/g). Thus, the results indicated that the thermal stability of the treated zinc chloride was improved compared with the control sample. The current study anticipated that The Trivedi Effect® - Energy of Consciousness Healing Treatment might lead to produce a thermally stable new polymorphic form of zinc chloride, which would be more soluble and bioavailable compared with the untreated compound. Hence, the treated zinc chloride would be very useful to design better nutraceutical/pharmaceutical formulations that might offer better therapeutic response against inflammatory diseases, immunological disorders, aging, stress, cancer, etc. https://www.trivedieffect.com/science/evaluation-of-the-physicochemical-structural-thermal-and-behavioral-properties-of-the-energy-of-consciousness-healing-treated-zinc-chloride http://www.sciencepublishinggroup.com/journal/paperinfo?journalid=217&doi=10.11648/j.bio.20170502.1

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    Robust Joint Multi-Antenna Spoofing Detection and Attitude Estimation using Direction Assisted Multiple Hypotheses RAIM

    Get PDF
    The paper presents an approach for detection of spoofing/meaconing signals using the direction-of-arrival (DOA) measurements available in a multi-antenna navigation receiver. The detection is based on comparison and statistically testing of the measured DOAs against the expected DOAs. The expected DOAs are computed in the receiver using the almanac and ephemeris information while performing the estimation of the user position. The attitude of the antenna array is assumed to be unknown and therefore has to be estimated as well. Consequently, the detection of spoofing/meaconing signals using this approach is treated as a joint detection/estimation problem. The solution to this problem is described in this paper. In addition, the performance of the proposed approach is analyzed through simulations in exemplary artificial scenarios and by processing real DOA measurement data collected during measurement campaigns

    Soziologie der Stimme. Über den Körper in der Kommunikation

    No full text
    Schützeichel R. Soziologie der Stimme. Über den Körper in der Kommunikation. In: Keller R, Meuer M, eds. Körperwissen. Wiesbaden: VS-Verlag; 2010: 85-104

    IPACS-benchmark : integrated performance analysis of computer systems (IPACS); benchmarks for distributed computer systems

    Full text link
    The IPACS project (Integrated Performance Analysis of Computer Systems), which was funded by the German Federal Ministry of Education and Research (BMBF), wants to define a new basis for measuring system performance of distributed systems. Its objective is to develop methods for measuring system performance on High Performance Computers (HPC) based on low level benchmarks, compute kernels, open source- and commercial application benchmarks. Additionally, it covers the development of methods for performance modelling and prediction of commercial codes. A further significant element is the integration into a benchmark environment consisting of a web based repository and a distributed benchmark-execution framework that ensures an easy usability and enables a just-in-time analysis of benchmark results

    Peptide Vaccination against Cytomegalovirus Induces Specific T Cell Response in Responses in CMV Seronegative End-Stage Renal Disease Patients

    No full text
    Introduction: Cytomegalovirus (CMV) reactivation occurs in seronegative patients after solid organ transplantation (SOT) particularly from seropositive donors and can be lethal. Generation of CMV-specific T cells helps to prevent CMV reactivation. Therefore, we initiated a clinical phase I CMVpp65 peptide vaccination trial for seronegative end-stage renal disease patients waiting for kidney transplantation. Methods: The highly immunogenic nonamer peptide NLVPMVATV derived from CMV phosphoprotein 65(CMVpp65) in a water-in-oil emulsion (Montanide™) plus imiquimod (Aldara™) as an adjuvant was administered subcutaneously four times biweekly. Clinical course as well as immunological responses were monitored using IFN-γ ELISpot assays and flow cytometry for CMV-specific CD8+ T cells. Results: Peptide vaccination was well tolerated, and no drug-related serious adverse events were detected except for Grade I–II local skin reactions. Five of the 10 patients (50%) mounted any immune response (responders) and 40% of the patients presented CMV-specific CD8+ T cell responses elicited by these prophylactic vaccinations. No responders experienced CMV reactivation in the 18 months post-transplantation, while all non-responders reactivated. Conclusion: CMVpp65 peptide vaccination was safe, well tolerated, and clinically encouraging in seronegative end-stage renal disease patients waiting for kidney transplantation. Further studies with larger patient cohorts are planned

    Digital Dementia Registry Bavaria—digiDEM Bayern: study protocol for a multicentre, prospective, longitudinal register study

    Get PDF
    Introduction Dementia is one of the most relevant widespread diseases, with a prevalence of currently 50 million people with dementia worldwide. The care of people with dementia will be one of the major challenges for healthcare systems worldwide. Digitalisation offers new possibilities to improve both dementia healthcare and health outcomes research as a fundament for national healthcare planning. The ‘Digital Dementia Registry Bavaria—digiDEM Bayern’ aims to improve the understanding of the complexity and long-term progression of dementia and the current care situation in Bavaria. Moreover, by offering digital services, digiDEM will actively contribute to improving the care situation in Bavaria.Methods and analysis digiDEM will recruit people with dementia and their family caregivers in all administrative regions of Bavaria. All participants will undergo dementia screening prior to study inclusion in order to identify people with mild cognitive impairment and mild-to-moderate dementia. Participants will be followed up over a period of three years. Sociodemographic data, type of dementia, symptoms, diagnosis, cognitive trajectories, activities of daily living, behavioural and psychological symptoms, falls, resource utilisation, caregiver burden, quality of life, needs of people with dementia and their caregivers, mobility, use of media and sources of information will be assessed. The project will implement a digital web-based platform for data collection. Data will be collected by means of standardised online or face-to-face interviews.Ethics and dissemination The study obtained ethical approval from the Ethics Committee of the Medical Faculty of Friedrich-Alexander-University Erlangen-Nürnberg (FAU) (application number: 253_20 B). Findings will be used for evidence-based decision-making for health decision-makers in order to optimise dementia healthcare in the state of Bavaria. Specific analyses will be conducted for the participating research partners. Results of the study will be published in peer-reviewed journals
    corecore