11 research outputs found

    Enriched childhood experiences moderate age-related motor and cognitive decline

    Get PDF
    Sherpa Romeo green journal: open accessAging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover,it is thought that decreased lateralization of neural function in older adults may point to increase neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks.Ye

    Bimanual skill acquisition : modulation by sex, aging, and auditory feedback

    Get PDF
    xii, 159 leaves : ill. ; 29 cmBimanual movement is integral to daily function. As such, it is important to understand factors that influence bimanual performance. Playing the piano was employed to examine bimanual movement. Additionally, the weather prediction task was administered as a measure of non-declarative learning. Sex influenced motor performance. Males tended to perform asymmetrical movements with less skill than females. Age affected motor performance. Older adults were less proficient, but improved similarly with practice as young adults. Further, older adults exhibited differential deterioration of bimanual movement. Feedback and music training affected motor performance. Females performed bimanual movement less proficiently with auditory feedback. Individuals with music training performed bimanual movements relative to unimanual movements better with feedback. Music training moderated age-related differential deterioration of bimanual movements. Older adults performed significantly worse than young adults on the weather prediction task. In addition, the weather prediction task correlated with motor measures in a sample including older adults

    LoCuSS: The Sunyaev-Zel'dovich Effect and Weak Lensing Mass Scaling Relation

    Get PDF
    We present the first weak-lensing-based scaling relation between galaxy cluster mass, M_wl, and integrated Compton parameter Y_sph. Observations of 18 galaxy clusters at z~0.2 were obtained with the Subaru 8.2-m telescope and the Sunyaev-Zel'dovich Array. The M_wl-Y_sph scaling relations, measured at Delta=500, 1000, and 2500 rho_c, are consistent in slope and normalization with previous results derived under the assumption of hydrostatic equilibrium (HSE). We find an intrinsic scatter in M_wl at fixed Y_sph of 20%, larger than both previous measurements of M_HSE-Y_sph scatter as well as the scatter in true mass at fixed Y_sph found in simulations. Moreover, the scatter in our lensing-based scaling relations is morphology dependent, with 30-40% larger M_wl for undisturbed compared to disturbed clusters at the same Y_sph at r_500. Further examination suggests that the segregation may be explained by the inability of our spherical lens models to faithfully describe the three-dimensional structure of the clusters, in particular, the structure along the line-of-sight. We find that the ellipticity of the brightest cluster galaxy, a proxy for halo orientation, correlates well with the offset in mass from the mean scaling relation, which supports this picture. This provides empirical evidence that line-of-sight projection effects are an important systematic uncertainty in lensing-based scaling relations.Comment: Accepted versio

    Bilateral actigraphic quantification of upper extremity movement in hemiparetic children with perinatal stroke: a case control study

    No full text
    Abstract Background Hemiparetic cerebral palsy impacts millions of people worldwide. Assessment of bilateral motor function in real life remains a major challenge. We evaluated quantification of upper extremity movement in hemiparetic children using bilateral actigraphy. We hypothesized that movement asymmetry correlates with standard motor outcome measures. Methods Hemiparetic and control participants wore bilateral wrist Actiwatch2 (Philips) for 48 h with movement counts recorded in 15-s intervals. The primary outcome was a novel statistic of movement asymmetry, the Actigraphic Movement Asymmetry Index (AMAI). Relationships between AMAI and standard motor outcomes (Assisting Hand Assessment, Melbourne Assessment, and Box and Block Test [BB]) were explored with Pearson or Spearman correlation. Results 30 stroke (mean 11 years 2 months (3 years 10 months); 13 female, 17 male) and 23 control (mean 11 years 1 month (4 years 5 months); 8 female, 15 male) were enrolled. Stroke participants demonstrated higher asymmetry. Correlations between AMAI and standard tests were moderate and strongest during sleep (BB: r = 0.68, p < 0.01). Conclusions Standard tests may not reflect the extent of movement asymmetry during daily life in hemiparetic children. Bilateral actigraphy may be a valuable complementary tool for measuring arm movement, potentially enabling improved evaluation of therapies with a focus on child participation

    Sensorimotor Robotic Measures of tDCS- and HD-tDCS-Enhanced Motor Learning in Children

    No full text
    Transcranial direct-current stimulation (tDCS) enhances motor learning in adults. We have demonstrated that anodal tDCS and high-definition (HD) tDCS of the motor cortex can enhance motor skill acquisition in children, but behavioral mechanisms remain unknown. Robotics can objectively quantify complex sensorimotor functions to better understand mechanisms of motor learning. We aimed to characterize changes in sensorimotor function induced by tDCS and HD-tDCS paired motor learning in children within an interventional trial. Healthy, right-handed children (12–18 y) were randomized to anodal tDCS, HD-tDCS, or sham targeting the right primary motor cortex during left-hand Purdue pegboard test (PPT) training over five consecutive days. A KINARM robotic protocol quantifying proprioception, kinesthesia, visually guided reaching, and an object hit task was completed at baseline, posttraining, and six weeks later. Effects of the treatment group and training on changes in sensorimotor parameters were explored. Twenty-four children (median 15.5 years, 52% female) completed all measures. Compared to sham, both tDCS and HD-tDCS demonstrated enhanced motor learning with medium effect sizes. At baseline, multiple KINARM measures correlated with PPT performance. Following training, visually guided reaching in all groups was faster and required less corrective movements in the trained arm ((2) = 9.250, ). Aspects of kinesthesia including initial direction error improved across groups with sustained effects at follow-up ((2) = 9.000, ). No changes with training or stimulation were observed for position sense. For the object hit task, the HD-tDCS group moved more quickly with the right hand compared to sham at posttraining ((2) = 6.255, ). Robotics can quantify complex sensorimotor function within neuromodulator motor learning trials in children. Correlations with PPT performance suggest that KINARM metrics can assess motor learning effects. Understanding how tDCS and HD-tDCS enhance motor learning may be improved with robotic outcomes though specific mechanisms remain to be defined. Exploring mechanisms of neuromodulation may advance therapeutic approaches in children with cerebral palsy and other disabilities.Peer Reviewe

    BCI-activated electrical stimulation in children with perinatal stroke and hemiparesis: A pilot study

    Get PDF
    BackgroundPerinatal stroke (PS) causes most hemiparetic cerebral palsy (CP) and results in lifelong disability. Children with severe hemiparesis have limited rehabilitation options. Brain computer interface- activated functional electrical stimulation (BCI-FES) of target muscles may enhance upper extremity function in hemiparetic adults. We conducted a pilot clinical trial to assess the safety and feasibility of BCI-FES in children with hemiparetic CP.MethodsThirteen participants (mean age = 12.2 years, 31% female) were recruited from a population-based cohort. Inclusion criteria were: (1) MRI-confirmed PS, (2) disabling hemiparetic CP, (3) age 6–18 years, (4) informed consent/assent. Those with neurological comorbidities or unstable epilepsy were excluded. Participants attended two BCI sessions: training and rehabilitation. They wore an EEG-BCI headset and two forearm extensor stimulation electrodes. Participants’ imagination of wrist extension was classified on EEG, after which muscle stimulation and visual feedback were provided when the correct visualization was detected.ResultsNo serious adverse events or dropouts occurred. The most common complaints were mild headache, headset discomfort and muscle fatigue. Children ranked the experience as comparable to a long car ride and none reported as unpleasant. Sessions lasted a mean of 87 min with 33 min of stimulation delivered. Mean classification accuracies were (M = 78.78%, SD = 9.97) for training and (M = 73.48, SD = 12.41) for rehabilitation. Mean Cohen’s Kappa across rehabilitation trials was M = 0.43, SD = 0.29, range = 0.019–1.00, suggesting BCI competency.ConclusionBrain computer interface-FES was well -tolerated and feasible in children with hemiparesis. This paves the way for clinical trials to optimize approaches and test efficacy

    The Tragedy of Wasted Funds and Broken Dreams: An Economic Analysis of Childhood Exposure to Crime and Violence

    No full text
    corecore