366 research outputs found

    A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy

    Full text link
    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. An early analysis noted that dwarf galaxies may not be isotropically distributed around our Galaxy, as several are correlated with streams of HI emission, and possibly form co-planar groups. These suspicions are supported by recent analyses, and it has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence (99.998% significance) of a planar sub-group of satellites in the Andromeda galaxy, comprising approximately 50% of the population. The structure is vast: at least 400 kpc in diameter, but also extremely thin, with a perpendicular scatter <14.1 kpc (99% confidence). Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This finding shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum, a new insight for our understanding of the origin of these most dark matter dominated of galaxies. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and is co-planar with the Milky Way to Andromeda position vector. The existence of such extensive coherent kinematic structures within the halos of massive galaxies is a fact that must be explained within the framework of galaxy formation and cosmology.Comment: Published in the 3rd Jan 2013 issue of Nature. 19 pages, 4 figures, 1 three-dimensional interactive figure. To view and manipulate the 3-D figure, an Adobe Reader browser plug-in is required; alternatively save to disk and view with Adobe Reade

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    Periodic Host Absence Can Select for Higher or Lower Parasite Transmission Rates

    Get PDF
    This paper explores the effect of discontinuous periodic host absence on the evolution of pathogen transmission rates by using Ro maximisation techniques. The physiological consequence of an increased transmission rate can be either an increased virulence, i.e. there is a transmission-virulence trade-off or ii) a reduced between season survival, i.e. there is a transmission-survival trade-off. The results reveal that the type of trade-off determines the direction of selection, with relatively longer periods of host absence selecting for higher transmission rates in the presence of a trade-off between transmission and virulence but lower transmission rates in the presence of a trade-of between transmission and between season survival. The fact that for the transmission-virulence trade-off both trade-off parameters operate during host presence whereas for the transmission-survival trade-off one operates during host presence (transmission) and the other (survival) during the period of host absence is the main cause for this difference in selection direction. Moreover, the period of host absence seems to be the key determinant of the pathogens transmission rate. Comparing plant patho-systems with contrasting biological features suggests that airborne plant pathogen respond differently to longer periods of host absence than soil-borne plant pathogens

    Quantitative analysis of CT-perfusion parameters in the evaluation of brain gliomas and metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The paper reports a quantitative analysis of the perfusion maps of 22 patients, affected by gliomas or by metastasis, with the aim of characterizing the malignant tissue with respect to the normal tissue. The gold standard was obtained by histological exam or nuclear medicine techniques. The perfusion scan provided 11 parametric maps, including Cerebral Blood Volume (CBV), Cerebral Blood Flow (CBF), Average Perfusion (P<sub>mean</sub>) and Permeability-surface area product (PS).</p> <p>Methods</p> <p>The perfusion scans were performed after the injection of 40 ml of non-ionic contrast agent, at an injection rate of 8 ml/s, and a 40 s cine scan with 1 s interval was acquired. An expert radiologist outlined the region of interest (ROI) on the unenhanced CT scan, by using a home-made routine. The mean values with their standard deviations inside the outlined ROIs and the contralateral ROIs were calculated on each map. Statistical analyses were used to investigate significant differences between diseased and normal regions. Receiving Operating Characteristic (ROC) curves were also generated.</p> <p>Results</p> <p>Tumors are characterized by higher values of all the perfusion parameters, but after the statistical analysis, only the <it>PS</it>, <it>Pat</it><sub><it>Rsq </it></sub>(Patlak Rsquare) and <it>T</it><sub><it>peak </it></sub>(Time to Peak) resulted significant. ROC curves, confirmed both <it>Pat</it><sub><it>Rsq </it></sub>and <it>PS </it>as equally reliable metrics for discriminating between malignant and normal tissues, with areas under curves (AUCs) of 0.82 and 0.81, respectively.</p> <p>Conclusion</p> <p>CT perfusion is a useful and non invasive technique for evaluating brain neoplasms. Malignant and normal tissues can be accurately differentiated using perfusion map, with the aim of performing tumor diagnosis and grading, and follow-up analysis.</p

    Exclusive Leptoproduction of rho^0 Mesons from Hydrogen at Intermediate Virtual Photon Energies

    Full text link
    Measurements of the cross section for exclusive virtual-photoproduction of rho^0 mesons from hydrogen are reported. The data were collected by the HERMES experiment using 27.5 GeV positrons incident on a hydrogen gas target in the HERA storage ring. The invariant mass W of the photon-nucleon system ranges from 4.0 to 6.0 GeV, while the negative squared four-momentum Q^2 of the virtual photon varies from 0.7 to 5.0 GeV^2. The present data together with most of the previous data at W > 4 GeV are well described by a model that infers the W-dependence of the cross section from the dependence on the Bjorken scaling variable x of the unpolarized structure function for deep-inelastic scattering. In addition, a model calculation based on Off-Forward Parton Distributions gives a fairly good account of the longitudinal component of the rho^0 production cross section for Q^2 > 2 GeV^2.Comment: 10 pages, 6 embedded figures, LaTeX for SVJour(epj) document class. Revisions: curves added to Fig. 1, several clarifications added to tex

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    Low Temperature-Dependent Salmonid Alphavirus Glycoprotein Processing and Recombinant Virus-Like Particle Formation

    Get PDF
    Pancreas disease (PD) and sleeping disease (SD) are important viral scourges in aquaculture of Atlantic salmon and rainbow trout. The etiological agent of PD and SD is salmonid alphavirus (SAV), an unusual member of the Togaviridae (genus Alphavirus). SAV replicates at lower temperatures in fish. Outbreaks of SAV are associated with large economic losses of ∼17 to 50 million $/year. Current control strategies rely on vaccination with inactivated virus formulations that are cumbersome to obtain and have intrinsic safety risks. In this research we were able to obtain non-infectious virus-like particles (VLPs) of SAV via expression of recombinant baculoviruses encoding SAV capsid protein and two major immunodominant viral glycoproteins, E1 and E2 in Spodoptera frugiperda Sf9 insect cells. However, this was only achieved when a temperature shift from 27°C to lower temperatures was applied. At 27°C, precursor E2 (PE2) was misfolded and not processed by host furin into mature E2. Hence, E2 was detected neither on the surface of infected cells nor as VLPs in the culture fluid. However, when temperatures during protein expression were lowered, PE2 was processed into mature E2 in a temperature-dependent manner and VLPs were abundantly produced. So, temperature shift-down during synthesis is a prerequisite for correct SAV glycoprotein processing and recombinant VLP production
    corecore