132 research outputs found

    Systems genetics approaches to understand complex traits.

    Get PDF
    Systems genetics is an approach to understand the flow of biological information that underlies complex traits. It uses a range of experimental and statistical methods to quantitate and integrate intermediate phenotypes, such as transcript, protein or metabolite levels, in populations that vary for traits of interest. Systems genetics studies have provided the first global view of the molecular architecture of complex traits and are useful for the identification of genes, pathways and networks that underlie common human diseases. Given the urgent need to understand how the thousands of loci that have been identified in genome-wide association studies contribute to disease susceptibility, systems genetics is likely to become an increasingly important approach to understanding both biology and disease

    Fibromiyalji sendromu ve huzursuz bacak sendromu birlikteliği: Yaşam ve uyku kalitesi analizi

    Get PDF
    Fibromyalji Sendromu (FMS) ve Huzursuz Bacak Sendromu (HBS) toplumda oldukça sık görülen ve tanıları klinik olarak konulan hastalıklardır. FMS’li hastalarda HBS daha sık görülmekte ve bu durumun nedeni tam olarak bilinmemektedir. HBS farkındalığı istenilen düzeyde değildir. FMS’li hastalarda HBS eşlik etmesi durumunda HBS’ye tanı konmaması ve tedavi edilmemesi FMS tedavisini güçleştirir ve hastaların yaşam kalitesini olumsuz etkiler. Bu çalışmada FMS’li hastalarda HBS sıklığının ve şiddetinin bulunması, FMS ve HBS birlikteliğinin yaşam kalitesi ve uyku kalitesi üzerine etkisinin belirlenmesi amaçlanmıştır. Araştırmada FMS tanısıyla takip edilen veya FMS tanısı yeni konulan hastalarda yüz yüze görüşme yöntemi ile HBS varlığı ve şiddeti belirlendi ve tüm hastaların Pittsburg Uyku Kalitesi İndeksi (PUKİ), Epworth Uykuluk Skalası (EUA) ve Fibromyalji Etki Anketi (FEA) skorları bulundu. Ayrıca tam kan sayımı, ferritin, kreatinin, TSH düzeyleri ölçüldü. Araştırmaya ortanca yaşları 49.0(39.0-57.0) [ortanca(%25-75)] 115 kadın hasta katıldı. Hastaların %42.6’sında FMS’ye eşlik eden HBS olduğu bulundu. HBS hastaların %20.4’ünde şiddetli, %18.3’ünde orta şiddetli olarak sınıflandırıldı. FMS’li hastaların %91.3’ü kendilerinde uyku bozukluğu olduğunu belirtti ve % 76.5’inde PUKİ ile uyku bozukluğu olduğu saptandı. HBS’si olan ve olmayan FMS hastalarının PUKİ skorları 9.0±4.4vs7.8±4.3,p=0.003; EUS skorları 5.0(3.0- 7.5)vs3.0(1.0-4.3),p=0.036 ve FEA skorları 68.1±9.8vs59.4±16.9,p=0.027 olarak bulundu. HBS’si olan hastalarda uyku kalitesi bozukluğu ve anemi sıklıkları daha fazlaydı. HBS’si şiddetli ve çok şiddetli olan grubun FEA skorları hafif ve orta olanlardan yüksekti. Araştırmamızda FMS’de HBS sıklığının normal toplumdan fazla olduğu, HBS’si olan olan FMS hastalarının uyku ve yaşam kalitelerinin daha kötü olduğu bulundu. Bu sonuçlara dayanarak FMS tanısı konulan her hastada HBS varlığının araştırılması ve varsa bu hastalığa yönelik tedavilerin planlanması gerektiği söylenebilir. FMS ve HBS birlikteliğini daha iyi açıklayabilecek prospektif kohort çalışmaları yapılmalıdır

    Sex differences in the genetic and molecular mechanisms of coronary artery disease

    Get PDF
    Sex differences in coronary artery disease (CAD) presentation, risk factors and prognosis have been widely studied. Similarly, studies on atherosclerosis have shown prominent sex differences in plaque biology. Our understanding of the underlying genetic and molecular mechanisms that drive these differences remains fragmented and largely understudied. Through reviewing genetic and epigenetic studies, we identified more than 40 sex-differential candidate genes (13 within known CAD loci) that may explain, at least in part, sex differences in vascular remodeling, lipid metabolism and endothelial dysfunction. Studies with transcriptomic and single-cell RNA sequencing data from atherosclerotic plaques highlight potential sex differences in smooth muscle cell and endothelial cell biology. Especially, phenotypic switching of smooth muscle cells seems to play a crucial role in female atherosclerosis. This matches the known sex differences in atherosclerotic phenotypes, with men being more prone to lipid-rich plaques, while women are more likely to develop fibrous plaques with endothelial dysfunction. To unravel the complex mechanisms that drive sex differences in CAD, increased statistical power and adjustments to study designs and analysis strategies are required. This entails increasing inclusion rates of women, performing well-defined sex-stratified analyses and the integration of multi-omics data

    Intrinsic transcriptomic sex differences in human endothelial cells at birth and in adults are associated with coronary artery disease targets

    Get PDF
    Sex differences in endothelial cell (EC) biology may reflect intrinsic differences driven by chromosomes or sex steroid exposure and gender differences accumulated over life. We analysed EC gene expression data from boy-girl twins at birth and in non-twin adults to detect sex differences at different stages of life, and show that 14-25% of the EC transcriptome is sex-biased. By combining data from both stages of life, we identified sex differences that are present at birth and maintained throughout life, and those that are acquired over life. Promisingly, we found that genes that present with an acquired sex difference in ECs are more likely to be targets of sex steroids. Annotating both gene sets with data from multiple genome-wide association studies (GWAS) revealed that genes with an intrinsic sex difference in ECs are enriched for coronary artery disease GWAS hits. This study underscores the need for treating sex as a biological variable

    \u3ci\u3eTrans\u3c/i\u3e-ancestry Fine Mapping and Molecular Assays Identify Regulatory Variants at the ANGPTL8 HDL-C GWAS Locus

    Get PDF
    Recent genome-wide association studies (GWAS) have identified variants associated with highdensity lipoprotein cholesterol (HDL-C) located in or near the ANGPTL8 gene. Given the extensive sharing of GWAS loci across populations, we hypothesized that at least one shared variant at this locus affects HDL-C. The HDL-C–associated variants are coincident with expression quantitative trait loci for ANGPTL8 and DOCK6 in subcutaneous adipose tissue; however, only ANGPTL8 expression levels are associated with HDL-C levels. We identified a 400-bp promoter region of ANGPTL8 and enhancer regions within 5 kb that contribute to regulating expression in liver and adipose. To identify variants functionally responsible for the HDL-C association, we performed fine-mapping analyses and selected 13 candidate variants that overlap putative regulatory regions to test for allelic differences in regulatory function. Of these variants, rs12463177-G increased transcriptional activity (1.5-fold, P = 0.004) and showed differential protein binding. Six additional variants (rs17699089, rs200788077, rs56322906, rs3760782, rs737337, and rs3745683) showed evidence of allelic differences in transcriptional activity and/or protein binding. Taken together, these data suggest a regulatory mechanism at the ANGPTL8 HDL-C GWAS locus involving tissue-selective expression and at least one functional variant

    The Hybrid Mouse Diversity Panel: a resource for systems genetics analyses of metabolic and cardiovascular traits

    Get PDF
    The Hybrid Mouse Diversity Panel (HMDP) is a collection of approximately 100 well-characterized inbred strains of mice that can be used to analyze the genetic and environmental factors underlying complex traits. While not nearly as powerful for mapping genetic loci contributing to the traits as human genome-wide association studies, it has some important advantages. First, environmental factors can be controlled. Second, relevant tissues are accessible for global molecular phenotyping. Finally, because inbred strains are renewable, results from separate studies can be integrated. Thus far, the HMDP has been studied for traits relevant to obesity, diabetes, atherosclerosis, osteoporosis, heart failure, immune regulation, fatty liver disease, and host-gut microbiota interactions. High-throughput technologies have been used to examine the genomes, epigenomes, transcriptomes, proteomes, metabolomes, and microbiomes of the mice under various environmental conditions. All of the published data are available and can be readily used to formulate hypotheses about genes, pathways and interactions

    Single-Cell Epigenomics and Functional Fine-Mapping of Atherosclerosis GWAS Loci

    Get PDF
    Rationale: Genome-wide association studies have identified hundreds of loci associated with coronary artery disease (CAD). Many of these loci are enriched in cisregulatory elements but not linked to cardiometabolic risk factors nor to candidate causal genes, complicating their functional interpretation. Objective: Single-nucleus chromatin accessibility profiling of the human atherosclerotic lesions was used to investigate cell type-specific patterns of cisregulatory elements, to understand transcription factors establishing cell identity, and to interpret CAD-relevant, noncoding genetic variation. Methods and Results: We used single-nucleus ATAC-seq (assay for transposase-accessible chromatin with sequencing) to generate DNA accessibility maps in >7000 cells derived from human atherosclerotic lesions. We identified 5 major lesional cell types including endothelial cells, smooth muscle cells, monocyte/macrophages, natural killer/T cells, and B cells and further investigated subtype characteristics of macrophages and smooth muscle cells transitioning into fibromyocytes. We demonstrated that CAD-associated genetic variants are particularly enriched in endothelial and smooth muscle cell-specific open chromatin. Using single-cell coaccessibility and cis-expression quantitative trait loci information, we prioritized putative target genes and candidate regulatory elements for approximate to 30% of all known CAD loci. Finally, we performed genome-wide experimental fine-mapping of the CAD variants identified in genome-wide association studies using epigenetic quantitative trait loci analysis in primary human aortic endothelial cells and self-transcribing active regulatory region sequencing (STARR-Seq) massively parallel reporter assay in smooth muscle cells. This analysis identified potential causal single-nucleotide polymorphisms (SNPs) and the associated target gene for over 30 CAD loci. We present several examples where the chromatin accessibility and gene expression could be assigned to one cell type predicting the cell type of action for CAD loci. Conclusions: These findings highlight the potential of applying single-nucleus ATAC-seq to human tissues in revealing relative contributions of distinct cell types to diseases and in identifying genes likely to be influenced by noncoding genome-wide association study variants.</p

    Trans-ancestry Fine Mapping and Molecular Assays Identify Regulatory Variants at the ANGPTL8 HDL-C GWAS Locus

    Get PDF
    Recent genome-wide association studies (GWAS) have identified variants associated with high-density lipoprotein cholesterol (HDL-C) located in or near the ANGPTL8 gene. Given the extensive sharing of GWAS loci across populations, we hypothesized that at least one shared variant at this locus affects HDL-C. The HDL-C–associated variants are coincident with expression quantitative trait loci for ANGPTL8 and DOCK6 in subcutaneous adipose tissue; however, only ANGPTL8 expression levels are associated with HDL-C levels. We identified a 400-bp promoter region of ANGPTL8 and enhancer regions within 5 kb that contribute to regulating expression in liver and adipose. To identify variants functionally responsible for the HDL-C association, we performed fine-mapping analyses and selected 13 candidate variants that overlap putative regulatory regions to test for allelic differences in regulatory function. Of these variants, rs12463177-G increased transcriptional activity (1.5-fold, P = 0.004) and showed differential protein binding. Six additional variants (rs17699089, rs200788077, rs56322906, rs3760782, rs737337, and rs3745683) showed evidence of allelic differences in transcriptional activity and/or protein binding. Taken together, these data suggest a regulatory mechanism at the ANGPTL8 HDL-C GWAS locus involving tissue-selective expression and at least one functional variant

    Integrative Genomics Reveals Novel Molecular Pathways and Gene Networks for Coronary Artery Disease

    Get PDF
    The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions
    corecore