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 Common forms of cardiovascular and metabolic diseases 
are caused by the interactions of multiple genetic and envi-
ronmental factors. The ability to interrogate the genomes 
of large numbers of individuals using high density genotyp-
ing and, more recently, next generation sequencing has 
enabled the identifi cation of numerous loci robustly associ-
ated with many of the common disorders. However, efforts 
to extend these data to important biologic insights have pro-
gressed slowly. Human studies are often confounded by the 
diffi culty of monitoring environmental factors and the inabil-
ity to obtain relevant tissue samples for molecular analyses. 

 To address these issues, we have developed the Hybrid 
Mouse Diversity Panel (HMDP), a collection of approxi-
mately 100 inbred strains of mice exhibiting substantial 
diversity of most cardiovascular and metabolic traits relevant 
to human disease ( 1 ). The resource offers some important 
advantages for analysis of complex traits as compared with 
the traditional intercrosses between different mouse strains, 
including high-resolution association mapping and cumu-
lative data. The HMDP strains have now been studied for 
a variety of metabolic and cardiovascular traits as well as 
various “omics” phenotypes (  Table 1  ).  The results have 
been collected in a database which can be searched and 
analyzed to identify novel disease genes, model biologic 
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studied, increasing the accuracy of the data that are col-
lected, and results derived from different studies of the 
HMDP can be integrated. For example, transcriptomic 
data obtained in one study ( 1 ) were used to interpret pro-
teomic data ( 7 ) and metabolic data ( 8 ) obtained from a 
separate set of mice. 

 High-resolution association mapping 
 The ability to perform high-resolution association map-

ping in the HMDP is based on the inclusion of about 30 
“classic” inbred strains, which have undergone many gen-
erations of recombination since their origins from stocks 
of pet mice ( 9 ). This makes it possible to carry out associa-
tion analysis much as in a human GWAS. Generally, it is 
possible to map complex traits to one to two megabase 
regions containing fi ve to 20 genes or less using the 
HMDP, depending on the level of linkage disequilibrium 
and gene density of the region ( 1 ). This resolution is at 
least an order of magnitude improved as compared with 
traditional linkage analysis. For example,   Fig. 1   shows the 
mapping of a  cis -expression quantitative trait locus (eQTL) 
in the HMDP and an F2 intercross.  One important point 
to note is that because the classic inbred strains exhibit 
very signifi cant population structure, it is essential that this 
is corrected to avoid false positive associations. This is con-
veniently accomplished using mixed model algorithms 
such as EMMA ( 10 ) or FaST-LMM ( 11 ). These algorithms 
essentially perform a  t -test for association while correcting 
for population structure using a kinship matrix based on 
genotypes. Genome-wide signifi cance is determined using 
simulation, a Bonferroni correction, or a false discovery 
rate ( 1, 12 ). 

 Mapping power 
 With only 100 inbred strains in the HMDP, mapping 

power is considerably limited as compared with large in-
tercrosses between pairs of inbred strains or human 
GWASs with thousands of samples. Nevertheless, simula-
tion studies suggest that there is reasonable power to 
map loci that explain 5% or more of the trait variance 
( 1 ). Because, as in humans, there are likely to be hun-
dreds of loci that contribute to complex clinical traits, 
the mapping will generally detect only the handful of loci 
with strongest effects. Power can be increased by examin-
ing additional inbred and RI strains that have been geno-
typed ( 5, 13 ), but for practical reasons most studies have 
been limited to about 100 strains. Power can also be 
considerably increased while retaining high resolution 
by performing meta-analysis that incorporates data 
from traditional crosses ( 14, 15 ). Molecular phenotypes, 
such as transcript levels, protein levels, and metabolite 
levels, are generally determined by a much smaller 
number of loci than clinical traits and there is adequate 
power to map at least the major loci affecting these. For 
example, using expression arrays to quantitate liver tran-
script levels, about 2,500 signifi cant  cis -expression quanti-
tative trait loci (eQTLs) were detected in liver ( 1 ), while 
about 5,000  cis- eQTLs were detected in cultured macro-
phages ( 16 ). 

pathways, examine gene-by-environment, study host-gut 
microbiome relationships, and prioritize human genome-
wide association study (GWAS) candidate genes. 

 We anticipate that this review will primarily be of inter-
est to cardiometabolic investigators interested in using 
data from the HMDP to help guide their research. There-
fore, at the end of the review, in the Database section, we 
have discussed the kinds of questions that can be ad-
dressed using the data. Also, because many cardiometa-
bolic researchers may not be versed in genetics approaches, 
we have defi ned some of the terms and concepts used in 
this review in   Table 2  .  

 THE HMDP 

 The HMDP was developed as a systems genetics re-
source similar to recombinant inbred (RI) strain sets ( 2, 
3 ) or chromosome substitution strains ( 4 ), but with the 
added advantage of high-resolution association mapping 
( 1 ). It consists of a set of 30 classic inbred strains chosen 
for diversity plus 70 or more RI strains derived primarily 
from strains C57BL/6J and DBA/2J (the BxD RI set) and 
A/J and C57BL/6J (the AxB and BxA RI sets). The classic 
strains provide mapping resolution, while the RI strains 
provide power. All of the chosen strains are commercially 
available from the Jackson Laboratory (https://www.jax.
org) and all have been either sequenced (www.sanger.
ac.uk/science/data/mouse-genomes-project) or densely 
genotyped ( 5 ). 

 Cumulative data 
 In common with RI strains ( 6 ), the HMDP resource is 

renewable in the sense that the inbred strains are perma-
nent. This allows multiple mice of the same genotype to be 

 TABLE 1. Clinical and molecular phenotypes studied in the HMDP 
resource   

Trait Diet

Plasma lipids C, HF, ATH
Adiposity C, HF, ATH
Osteoporosis C
Blood cell levels C, HF, ATH
IR C, HF, ATH
Fatty liver disease HF, ATH
Heart failure induced by isoproterenol ISO
Atherosclerosis ATH
Diabetic nephropathy C
Transcript levels
 Liver C, HF, ATH
 Adipose C, HF
 Aorta ATH
 Hippocampus C
 Striatum C
 Skeletal muscle HF
 Heart C, ISO
Protein levels, liver C
Metabolites
 Liver C
 Plasma HF, ATH
Gut microbiome C, HF ATH
DNA methylation C

Mice were maintained on chow (C), high-fat (HF), or atherogenic 
(ATH) diets or treated with ISO.
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 TABLE 2. Glossary of genetics terms used in this review   

Term Defi nition

Biological scales Various levels in the fl ow of information from DNA to proteins to metabolites to cell structures to cell interactions.
 Cis -regulatory elements Regions of DNA which regulate the transcription of genes, usually nearby, on the same DNA strand. Examples are 

promoters or enhancers.
Congenic strains Strains in which a small region of the genome from one strain has been placed, by repeated crossing, onto the genetic 

background of a second strain.
Correlation In statistics, a measure of the strength and direction of a linear relationship between two variables. Usually measured 

as a correlation coeffi cient.
eQTL A genetic locus that controls the levels of a transcript.
GWAS An examination of common genetic variation across the genome designed to identify associations with traits such as 

common diseases. Typically, several hundred thousand SNPs are interrogated using microarray technologies.
Haplotypes Combinations of alleles at genetic loci that are inherited together.
Heritability An estimate of the proportion of genetic variation in a population that is attributable to genetic variation among 

individuals.
Inbred strains Strains in which a set of naturally occurring genetic variations have been fi xed by many generations of inbreeding.
Linkage analysis Analysis of the segregation patterns of alleles or loci in families or experimental crosses. Such analysis is commonly 

used to map genetic traits by testing whether a trait cosegregates with genetic markers whose chromosomal locations 
are known.

LD In population genetics, LD is the nonrandom association of alleles. For example, alleles of SNPs that reside near one 
another on a chromosome often occur in nonrandom combinations owing to infrequent recombination. LD should 
not be confused with genetic linkage, which occurs when genetic loci or alleles are inherited jointly, usually because 
they reside on the same chromosome.

LD blocks Regions of high correlation across genetic markers, which results from their linkage in  cis  on a chromosome and thus 
infrequent recombination during meiosis. LD blocks are often demarcated by recombination hot spots

Modules In the context of network modeling, groups of components that are tightly connected or correlated across a set of 
conditions, perturbations or genetic backgrounds.

Natural genetic variation Genetic variation that is present in all populations as a result of mutations that occur in the germline; the frequencies 
of such mutations in populations are affected by selection and by random drift. This is in contrast with experimental 
variation that is introduced by techniques such as gene targeting and chemical mutagenesis.

QTL A genetic locus that infl uences complex and usually continuous traits, such as blood pressure or cholesterol levels.
RI strains A set of inbred strains that is generally produced by crossing two parental inbred strains and then inbreeding random 

intercross progeny; they provide a permanent resource for examining the segregation of traits that differ between 
the parental strains.

Systems genetics A global analysis of the molecular factors that underlie variability in physiological or clinical phenotypes across 
individuals in a population. It considers not only the underlying genetic variation but also intermediate phenotypes 
such as gene expression, protein levels and metabolite levels, in addition to gene-by-gene and gene-by-environment 
interactions.

 Trans -regulatory factors Factors which regulate the transcription of genes at a distance. Examples are transcription factors and microRNAs.

LD, linkage disequilibrium.

  Fig. 1.  Greatly increased mapping resolution in the HMDP as 
compared with a traditional cross between two inbred strains. 
Shown is the mapping of a strong  cis -eQTL, for the gene  Cyp2c37 , 
by linkage in an F2 cross (blue line) or by association in the HMDP 
(black dots). The position of the gene is indicated by the red box. 
The F2 cross included about 300 mice and global transcript levels 
were determined using microarrays. The fi gure is reprinted from 
( 44 ), with permission  .   

 Genetic diversity 
 The HMDP panel includes about 4,000,000 common 

SNPs, roughly similar to the number of common SNPs in 
human populations ( 17 ), and there is substantial variation 
of most clinical traits that have been examined, as dis-
cussed below. In contrast, the Collaborative Cross and the 

Diversity Outbred ( 18 ) include “wild-derived” strains, 
which increase the diversity by an order of magnitude 
( 17 ). While there will certainly be greater total variation of 
most complex traits in the Collaborative Cross, there will 
also be greater genetic complexity, potentially complicat-
ing genetic dissection. Among the HMDP mice, about 
40% of genes exhibit signifi cant  cis -eQTLs in various tis-
sues, and the vast majority of genes exhibit secondary 
( trans -regulated) genetic variation. 

 Relevance to complex human diseases 
 If the mouse is to serve as a model of common meta-

bolic and cardiovascular traits, it is important that the rel-
evant pathways be conserved in the two species. One 
measure of such conservation is the degree of overlap be-
tween mouse and human GWAS data. Studies in the 
HMDP for osteoporosis ( 19, 20 ), obesity ( 21 ), blood cell 
levels ( 22 ), and heart failure ( 23 ) suggest that the overlap 
will be substantial. We discuss an example of pathway con-
servation in the section on fatty liver disease. 

 SYSTEMS GENETICS 

 The power of the HMDP for analysis of complex traits 
derives from the integration of genetics with global 
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information is apparent at the “hotspot” loci where differ-
ences in DNA methylation at a single locus can be seen to 
infl uence the levels of multiple transcripts, proteins, and 
metabolites. 

 As illustrated below, omics data can be used to identify 
candidate genes for clinical traits using correlation and 
causality testing ( 30–32 ). Interactions between genes and 
their relationships to clinical traits can also be examined 
using enrichment analyses or network modeling ( 33, 34 ). 
Finally, subclinical phenotypes can provide an additional 
useful “bridge” between molecular phenotypes and the 
more complex clinical traits; for example, Attie and 
Kebede studied insulin secretion by isolated pancreatic  �  
cells as a subphenotype for diabetes ( 35 ). In the sections 
below, we discuss the various datasets that have been gen-
erated and provide examples of the types of analyses that 
have been performed. 

 TRAITS RELEVANT TO COMMON DISEASES 

 Osteoporosis 
 Bone mineral density (BMD), a trait relevant to osteo-

porosis, is highly heritable in mice. Farber and colleagues 
examined variation of BMD among the HMDP strains and, 
using association and network modeling, have uncovered 
several novel genes, some of which also infl uence BMD in 
humans ( 19, 20 ). GWASs in the HMDP for total body, spi-
nal, and femoral BMD revealed four signifi cant associa-
tions (chromosomes 7, 11, 12, and 17) harboring between 
14 and 112 genes each  . This was reduced to 26 functional 
candidates by identifying those genes that were regulated 
by local eQTLs in bone or that harbored potentially func-
tional nonsynonymous coding variants. A candidate at the 
strongest locus (chromosome 12) was a nonsynonymous 
SNP in the additional sex combs-like 2 ( Asxl2 ) gene  . The 
role of the gene was confi rmed by showing that  Asxl2  
knockout mice exhibit reduced BMD ( 19 ) and this has 
been confi rmed in subsequent studies ( 36 ). It is notewor-
thy that the human  ASXL2  locus exhibits a suggestive as-
sociation with BMD. 

 To model biologic interactions of genes involved in 
BMD, the investigators used coexpression network analy-
sis, an approach that partitions genes into modules, along 
with causality modeling ( 31, 37 ). A graphic representation 
of one such module enriched in BMD genes is shown in 
  Fig. 3  .  Such network modeling studies suggested a func-
tion for  Asxl2  in osteoclast differentiation and this was vali-
dated by showing that knockdown of  Asxl2  in bone marrow 
macrophages impaired their ability to form macrophages. 
Two additional genes involved in osteoblast differentia-
tion,  Maged 1  and  Pard6g , were identifi ed using analyses of 
a coexpression network module containing many genes 
that defi ne the osteoblast lineage. Furthermore, the mod-
ule was shown to be strongly regulated by the  Wnt  signal-
ing agonist,  Sfrp1  ( 38 ). Recently, bone expression data 
from the HMDP were used to follow up on a BMD locus 
previously identifi ed in a traditional F2 cross between 
strains C3H/HeJ and C57BL/6J. These studies revealed 

molecular phenotypes using “omics” technologies ( Table 
1 ). The natural variations found among the inbred strains 
of the HMDP directly perturb a substantial fraction of all 
genes, as judged by the number of genes exhibiting  cis -
eQTL or allele-specifi c expression ( 24, 25 ), and these, in 
turn, result in thousands of secondary perturbations. 
When the molecular and clinical traits are monitored to-
gether, relationships between them can be observed using 
mapping, correlation, and modeling [reviewed in ( 26 )]. 
This is the basis of “systems genetics.” 

 Genetic analysis of molecular phenotypes using high 
throughput technologies 

 Omics data can be analyzed using genetics in the same 
manner as other phenotypic traits. For example, variations 
in the levels of a transcript in a population can be treated 
as a quantitative trait and the genetic loci responsible can 
be mapped to regions of the genome using linkage or as-
sociation analyses. Loci that reside near the genes whose 
transcripts are measured are likely to affect enhancer/pro-
moter function and are thus often assumed to act in  cis , 
while loci affecting expression of genes on other chromo-
somes or many megabases away on the same chromosome 
presumably act through diffusible factors and are thus as-
sumed to act in  trans . Such loci are termed eQTLs. Origi-
nally, individual transcript levels were quantitated in 
populations using hybridization or polymerase chain reac-
tion amplifi cation ( 27 ), but with the advent of expression 
arrays and RNA-Seq, it became possible to map eQTLs 
globally ( 1 ). Such studies have shown that genetic varia-
tions in gene expression are very common, affecting levels 
of thousands of genes in both human and mouse popula-
tions [reviewed in ( 26, 28 )]. Moreover, it appears that a 
large fraction ( � 85%) of the variations for common dis-
ease traits result from variations in gene expression rather 
than from structural (protein coding) variation [for ex-
ample, ( 29 )]. The levels of proteins and metabolites can 
also be quantitatively measured using high throughput 
technologies, and the loci controlling these can be simi-
larly mapped to identify protein QTLs (pQTLs) or metab-
olite QTLs ( 7, 8 ). 

 The fl ow of biologic information: from genes to 
molecular traits to clinical traits 

 Whereas common disease traits are complex, infl u-
enced by tens or hundreds of loci, molecular traits tend to 
be much simpler. For example,  cis -eQTLs often explain a 
large fraction of the variance of the transcript levels. A key 
aspect of the systems genetics approach is that molecular 
traits can thus constitute a bridge of sorts between DNA 
variation and clinical traits. An example of the application 
of such “vertical” omics is shown in   Fig. 2  .  Several million 
sites of DNA methylation were identifi ed in livers of the 
HMDP strains, using reduced representational bisulfi te se-
quencing, and 22,000 sites that exhibited substantial ge-
netic variation in methylation levels were selected. These 
were then tested for signifi cant association with molecular 
traits, as quantitated by expression arrays, proteomics, and 
metabolomics, as well as clinical traits. The fl ow of biologic 
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  Fig. 2.  The fl ow of biologic information from liver DNA methylation to liver transcripts, proteins, and metabolites, and then clinical 
traits. The genomic positions of hypervariable CpGs are shown on the x axes and the y axes denote clinical traits (A), metabolites (B), 
proteins (C), or transcripts (D). In (C) and (D), the proteins or transcripts are plotted on the y axis according to the location of the encod-
ing gene. Each dot is a signifi cant association at the corresponding Bonferroni thresholds across CpGs tested with levels of clinical traits or 
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number variation associated with altered expression levels, 
and  Degs1 , a fatty acid desaturase involved in the metabolism 
of bioactive sphingolipids. These same mice were exam-
ined for global transcript levels in liver, adipose, and muscle, 
as well as metabolites in plasma. A list of the most strongly 
correlated genes revealed many known to contribute to 
obesity, such as  Lep ,  Sfrp5 ,  MIxipl ,  Dgat1 , and  Nnmt  ( 21 ). 

 These results have some important implications for the 
current “epidemic of obesity”. Thus, the fi ndings support 
the concept of a genetically determined “setpoint,” be-
cause almost all of the strains studied reached a plateau 
level of body fat following the initial weight gain ( Fig. 4C ). 
The fi nal plateau level was dependent on the genetic back-
ground between strains and was only weakly correlated 
with food consumption ( 21 ), although within a strain 
there was strong correlation between food intake and the 
development of obesity. Moreover, cross-fostering studies 
(in which the microbiomes of different strains are ex-
changed) showed that gut microbiotas are responsible, in 
part, for the differences in response to dietary challenge 
( 42 ). This is consistent with the idea that subtle changes in 
microbiota composition may have contributed, in part, to 
the increased prevalence of obesity ( 43 ). 

 Insulin resistance and type 2 diabetes 
 Insulin resistance (IR) is characterized by the failure of 

tissues to respond appropriately to insulin. It is strongly 
associated with obesity and contributes importantly to type 
2 diabetes, fatty liver disease, and cardiovascular disease. 

 Bicc1  as a novel determinant of osteoblastogenesis and 
BMD in both mice and humans ( 20 ). 

 Obesity and dietary responsiveness 
 The analysis of obesity in humans is confounded by en-

vironmental factors such as the inability to monitor food 
intake. The HMDP has been particularly useful in examin-
ing the response to a high-fat dietary challenge because 
the same genetic backgrounds can be examined under dif-
ferent conditions. As shown in   Fig. 4A  , the HMDP strains 
exhibit substantial variation in body fat percentage on 
both chow and high-fat diets. The heritabilities for both 
fat as a percent of body weight as well as the response to a 
high-fat diet were in the range of 80%. Genome-wide as-
sociation analyses of the HMDP identifi ed eight signifi -
cant/suggestive loci associated with obesity traits, such as 
body fat percent change in response to the diet ( Fig. 4B ), 
several of which overlapped with human GWAS loci for 
body mass index   ( 21 ).  For example, the chromosome 18 
locus contains the endosomal/lysosomal Niemann-Pick 
C1 ( Npc1 ) gene, a human GWAS hit ( 39, 40 ). A previous 
study with heterozygous knockout mice for  Npc1  revealed 
increased responsiveness to a high-fat diet as compared 
with wild-type mice, whereas there was no effect on a low-
fat diet ( 41 ). This is precisely the phenotype observed in 
the HMDP: mice with reduced  Npc1  expression due to a 
 cis -eQTL had increased adiposity on the high-fat diet, but 
not the chow diet. Other strong candidates are the amy-
lase ( Amy ) genes on chromosome 3, which show copy 

levels of metabolites, proteins, or transcripts in liver. E, F: The association of percent methylation of a CpG on chromosome 1 at 173,115,750 
base pairs (x axis) versus the levels of plasma HDL cholesterol (E) or apoAII (F). Reproduced from ( 63 ), with permission.   

  Fig. 3.  Network analysis predicts that  Bicc1  plays a role in osteoblast differentiation.  Bicc1  is a member of 
module 6 in a coexpression network based on global gene expression in bone tissue of the HMDP. The 
nodes represent genes and the lines indicate connections based on coexpression across the HMDP strains. 
The location of  Bicc1  is highlighted and each node is colored based on gene ontology annotations listed in 
the top left corner. Reproduced from ( 20 ), with permission.   
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to IR. Analysis of the HMDP strains revealed large differ-
ences in IR when fed a diet rich in fat and refi ned carbo-
hydrates along with striking sex differences. More than 15 
genome-wide signifi cant loci for traits associated with IR 

  Fig. 4.  Genetic control of response to high-fat (HF) high-sucrose (HS) diet. Mice of the HMDP strains (six to eight male mice per group) 
were maintained on a low-fat chow diet until 8 weeks of age, when they were placed on a high-fat (32% kcal) and high-sucrose (25% kcal) 
diet for 8 weeks. The percent body fat on chow or on high-fat diet is shown in (A) and a GWAS of the percent body fat change following 
feeding of the diet is shown in (B). The red line in (B) indicates the threshold for genome-wide signifi cance and likely candidate genes 
under each peak are indicated. The increase in percent body fat in response to the diet largely plateaus after about 4 weeks (C), consistent 
with a genetically controlled “setpoint” model of obesity ( 21 ). Reproduced from ( 21 ), with permission.   

Analysis of IR in humans is confounded by environmental 
factors, sex differences, age, and disease pathology and, 
despite large GWASs, there has been limited success in 
identifying the genetic factors and pathways contributing 
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strong evidence from human studies for the involvement 
of six genes in susceptibility to NAFLD (  Table 3  )  .  In the 
HMDP, fi ve out of six of these genes exhibited signifi cant 
correlation, in terms of gene expression in adipose or 
liver, with hepatic TG levels. Some of these associations 
(those with  cis -eQTLs) may result from direct genetic vari-
ation driving the expression of these genes, whereas the 
others may be secondary. 

 Heart failure 
 Heart failure is a very common cause of death, with a 

lifetime risk of more than one in nine in developed coun-
tries. Characterized by loss of cardiac output, heart failure 
is a heterogeneous disorder associated with complex path-
ological features, including contractile dysfunction, fi bro-
sis, and hypertrophy. It is a highly heterogeneous disorder 
that results from many different chronic stressors, most 
notably hypertension and injury following myocardial 
infarction. The heterogeneity has complicated human 
GWASs and only a small number of signifi cant loci have 
been identifi ed despite meta-analyses of tens of thousands 
of patients ( 45, 46 ). To model heart failure in the mouse, 
Rau et al. ( 23 ) administered a  � -adrenergic agonist, isopro-
terenol (ISO), to the HMDP for 3 weeks using an implanted 
pump. The strains showed considerable variability in the 
development of hypertrophy, fi brosis, and changes in heart 
function (based on echocardiography parameters). GWASs 
revealed 7 signifi cant and 17 suggestive loci, containing an 
average of 14 genes in linkage disequilibrium with the peak 
SNP, for cardiac hypertrophy, fi brosis, and surrogate traits 
relevant to heart failure. A number of loci contained highly 
promising candidate genes, including genes known to con-
tribute to Mendelian cardiomyopathies in humans or hav-
ing established roles in cardiac pathology, as well as novel 
candidates based on systems genetics strategies. 

 A strong candidate in a chromosome 7 locus for fi brosis 
was  Abcc6 , an orphan transporter that is the cause of the 
disorder, pseudoxanthoma elasticum, characterized by 
chronic calcifi cation of a number of soft tissues, including 
heart. Mutations of the gene occur among a number of 
common mouse strains, such as DBA/2J and C3H/HeJ, 
where they cause calcifi cation of heart and other tissues 
in older mice beginning at about 6 months of age ( 47 ). 
To test the role of  Abcc6  in ISO-induced fi brosis, gene-
targeted mice on a C57BL/6J background were exam-
ined following ISO treatment. As compared with the 
wild-type mice the level of fi brosis (as measured by colla-
gen content) in the knockout mice was substantially in-
creased (  Fig. 5A  ).  Similarly, on a C3H/HeJ background, 
which carries a naturally occurring  Abcc6 -null mutation, 
mice expressing a genomic  Abcc6  transgene were rescued 
from fi brosis ( 22 ) ( Fig. 5B ). 

 Plasma lipids 
 As compared with humans, mice have relatively low levels 

of LDLs and TG-rich lipoproteins and somewhat elevated 
levels of HDLs ( 48 ). Even when fed high-fat diets, the lev-
els of LDL cholesterol and TGs remain relatively low. 
Higher levels of these, a prerequisite for the development 

were identifi ed and a novel IR gene,  Agpat5 , was validated. 
Mice in which  Agpat5  expression was suppressed, using an 
antisense oligonucleotide, had reduced plasma insulin lev-
els and increased ability to clear glucose ( 12 ).  Agpat5  is a 
mitochondrial lipid acyltransferase involved in the conver-
sion of lysophosphatidic acid to phosphatidic acid ( 12 ). 
Systems genetics analyses involving global transcript levels 
in liver and adipose tissue, as well as plasma metabolites, 
implicated a number of additional genes and revealed a 
signifi cant correlation with plasma arginine levels ( 12 ). 

 Fatty liver disease 
 Non-alcoholic fatty liver disease (NAFLD) encompasses 

a wide spectrum of liver abnormalities ranging from be-
nign accumulation of lipids (steatosis) to infl ammation and 
fi brosis (non-alcoholic steatohepatitis) to cirrhosis, and 
then end stage liver disease and cancer  . As yet, human 
GWASs have succeeded in identifying only a handful of 
genes signifi cantly associated with NAFLD and these ex-
plain a tiny fraction of disease heritability. NAFLD is 
strongly associated with obesity, diabetes, and dyslipid-
emia, and the “epidemic of obesity” has resulted in a high 
prevalence of NAFLD (20–30% of Western populations). 

 To identify genetic and environmental factors contribut-
ing to NAFLD, liver steatosis and related clinical and mo-
lecular traits were studied in the HMDP following feeding 
of a high-fat high-carbohydrate diet for 8 weeks ( 34 ). More 
than a 30-fold variation in liver TG was observed and, as in 
human populations, this was strongly associated with both 
body fat and IR, which together explained more than 40% 
of the variation in liver TG. GWASs revealed four loci sig-
nifi cantly associated with hepatic TG levels, and candidates 
of each of the loci were screened using gene expression 
data ( cis -eQTL, correlation with trait) and coding sequence 
variation, available in the Sanger database as discussed 
above. The  Gde1  gene in the chromosome 7 locus, contain-
ing a total of 17 genes, was selected on the basis of a strong 
 cis -eQTL and strong correlation with hepatic TG content in 
both liver and adipose. Its role in steatosis was confi rmed by 
showing that Gde1 overexpression and shRNA knockdown 
in liver using adenoviral delivery led to reciprocal effects in 
liver TG accumulation ( 44 ).  Gde1  encodes glycerophospho-
diester phosphodiesterase 1, a broadly expressed integral 
membrane protein that catalyzes the degradation of deacyl-
ated phospholipids, such as glycerophosphoethanolamine 
and glycerophosphocholine.  Gde1  has no direct role in TG 
biosynthetic pathways; however, one of the end products of 
the phosphodiesterase reaction is glycerol 3-phosphate, the 
precursor for TG biosynthesis. In addition,  Gde1  may affect 
hepatic metabolic homeostasis through altering the avail-
ability of bioactive phospholipids and metabolites. How the 
variation in liver TG in the HMDP strains will correlate with 
subsequent pathologies is unknown, but liver TG levels 
were strongly associated with plasma alanine aminotrans-
ferase levels  , a measure of liver injury. Prolonged feeding 
studies or stronger stressors will be required to examine the 
further progression of the disease. 

 NAFLD nicely illustrates the concordance of human 
and mouse disease pathways. At the present time, there is 
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 TABLE 3. Concordance of human and mouse NAFLD GWAS genes      

Gene r  P  cis- eQTL Tissue

 Gckr 0.19 0.04 NS Liver
 Ncan 0.37 6 × 10  � 5 3 × 10  � 8 Adipose
 Tm6 sf2  � 0.23 0.01 NS Adipose
 Lyplal1 0.27 0.003 2 × 10  � 30 Liver
 Trib1 0.24 0.012 NS Adipose
 Pnpla3 0.08 0.424 NS Liver

Six genes, listed here, have been associated with NAFLD in human studies. Transcript levels for these genes 
were determined in livers and gonadal adipose tissue of the HMDP. Five of the six (the exception being  Pnpla3 ) 
exhibited signifi cant correlation (r) with hepatic TG levels in mice fed a high-fat high-carbohydrate diet in either 
liver or adipose. Two of the fi ve had strong  cis -eQTLs in liver ( 44 ).

of reports of candidate gene studies. As discussed above 
under the section on plasma lipids, most studies have been 
carried out on  Ldlr   � / �   or  Apoe   � / �   genetic backgrounds to 
raise the levels of atherogenic lipoproteins such that the 
mice develop signifi cant lesions. The lesions share a num-
ber of characteristics with human lesions, and many 
human risk factors, such as hyperlipidemia, low HDL, hy-
pertension, and infl ammatory markers, replicate in mice. 
To examine atherosclerosis in the HMDP, Bennett et al. 
( 49 ) used an F1 hybrid strategy in which the dominant act-
ing atherosclerosis-promoting transgenes, human APOE-
Leiden and human CETP, were bred from strain C57BL/6J 
onto over 100 different strains of the HMDP  . Thus, the 
mice examined consisted of a genetic background de-
rived from 50% C57BL/6J and 50% from the other 
strain. They were then fed a “Western” diet containing 
1% cholesterol for 16 weeks and aortic lesion sizes were 

of atherosclerotic lesions, can be achieved by feeding a diet 
containing cholic acid or introducing mutations in certain 
lipid transport proteins, such as the LDL receptor or apoE. 
Plasma lipid levels in the HMDP have been determined 
for mice maintained on chow ( 1 ) and high-fat ( 21 ) diets, 
as well as on a hyperlipidemic [ APOE -Leiden, cholesteryl 
ester transfer protein (CETP) transgenic] background 
( 49 ). The observed loci for lipid levels have generally been 
consistent with those identifi ed in traditional crosses, but 
with greatly improved resolution ( 1 ). A meta-analysis of 
data from the HMDP, as well as several traditional crosses 
(a total of 4,965 mice), identifi ed a total of 26 signifi cant 
loci for HDL cholesterol levels ( 14 ). 

 Atherosclerosis 
 The mouse has become the most widely used animal 

model of atherosclerosis and there have been thousands 

  Fig. 5.   Abcc6  defi ciency contributes to cardiac fi brosis following treatment with the  � -adrenergic agonist, 
isoproterenol. A: Shows either wild-type C57BL/6J mice or C57BL/6J mice homozygous for a null (gene 
targeted) allele of  Abcc6  (Abcc6  � / �  ) following treatment with isoproterenol for 3 weeks. Neither strain devel-
oped signifi cant calcifi cation (stained with Alizarin Red) but the Abcc6  � / �   developed substantially increased 
fi brosis (stained blue with Masson’s trichrome). B: C3H/HeJ mice are naturally defi cient in  Abcc6  due to 
naturally occurring splicing mutation and when treated with isoproterenol develop extensive fi brosis and 
calcifi cation in the heart. In contrast, C3H/HeJ mice carrying one copy of a genomic  Abcc6  clone as a trans-
gene (C3H/HeJ Abcc6  � / �  ) were resistant to both fi brosis and calcifi cation. Reproduced from ( 23 ), with 
permission.   
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atherosclerosis, inferred causality using GWAS results, 
and, fi nally, identifi ed what were termed “key driver” 
genes. The modeling was verifi ed in part by comparing 
human and mouse networks and performing experiments 
with cell lines. 

 Infl ammatory responses 
 Many metabolic and cardiovascular traits have an im-

portant infl ammatory component. To examine genetic 
contributions to infl ammation, peritoneal macrophages 
from 92 strains of the HMDP were cultured and studied 
for genome-wide transcript levels before and after treat-
ment with lipopolysaccharide (LPS) or oxidized lipids 
(Ox-PAPC) ( 16 ). A larger number of  cis -eQTLs were iden-
tifi ed in this study, as compared with in vivo tissues (5,217 
in the control, 4,587 in the LPS, and 4,747 in the Ox-
PAPC, as compared with 2,000–4,000 in most tissue stud-
ies). Presumably, this refl ects reduced environmental 
effects and a more homogeneous cellular composition. 
Between 9,000 and 18,000  trans -eQTLs were also identi-
fi ed although, because of the problem of multiple com-
parisons, many of these are likely to be false positives ( 51 ). 
A number of the  trans -acting loci were present as 
“hotspots,” particularly after LPS treatment. The largest 
such hotspot was on chromosome 9 at 119 Mb and in-
cluded over 1,000 regulated genes, many of which were 
infl ammatory cytokines or LPS-primary response genes. 

assessed. In addition, global gene expression was quanti-
tated using arrays in the aorta and the liver, and levels 
of lipids, glucose, insulin, numerous cytokines, and a 
panel of metabolites were quantitated in the plasma. 
As shown in   Fig. 6  , despite the fact that all the mice con-
sisted of 50% C57BL/6J background, there was well over a 
600-fold range of variation in lesion sizes.  While males 
tended to have lesion sizes several-fold smaller than fe-
males, the sizes of lesions in males and females were very 
signifi cantly correlated ( r  = 0.474,  P  = 2.6 × 10  � 15 ). Because 
C57BL/6J mice have a roughly intermediate lesion size in 
both males and females, the very small lesions (less than 
half the size of those in C57BL/6J) cannot be explained by 
additive models of inheritance. The relationships between 
atherosclerosis and various risk factors in mice closely 
resembled those in humans ( 49 ). The data reported in 
the study provide a rich resource for further studies of 
atherosclerosis; for example, a number of relevant traits 
were mapped with high-resolution and a number of 
novel metabolite associations were observed. Further-
more, the expression data can be used to identify novel 
candidate genes or prioritize genes in human GWAS loci 
( 29, 49 ). 

 A combination of human and HMDP expression data 
were used to model cross-tissue regulatory gene networks 
for atherosclerosis ( 50 ). Briefl y, the authors constructed 
coexpression networks, identifi ed modules associated with 

  Fig. 6.  Atherosclerosis in the HMDP. Atherosclerosis lesion size ( � m 2  ± SEM) in the proximal aorta was quantitated in 697 female (A) 
and 281 male (B) mice using oil red O staining. In each panel, stains are arranged in rank order by strain-average lesion area. As discussed 
in the text, the null mice were on an APOE-Leiden, CETP transgene background and were fed a Western diet for 16 weeks. Data from 
Bennett et al. ( 49 ) with permission.   
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The locus contains 12 genes based on linkage disequilib-
rium of which only 6 were expressed in macrophages 
These were systematically tested using siRNA knockdown 
and the  trans  regulation of most of the genes was shown to 
be due to  2310061C15Rik , a poorly characterized gene 
with homology to a mitochondrial protein involved in cy-
tochrome C oxidase biogenesis ( 16 ). These data provide a 
rich resource for further studies of infl ammatory interac-
tions, including pathogen interactions; for example, peri-
odontal bone loss in response to LPS varies strikingly in 
the HMDP ( 52 ). 

 Type 1 diabetes and diabetic nephropathy 
 In some studies, only a fraction of the number of strains 

required for association mapping of traits have been char-
acterized. One such study involves analysis of kidney dis-
ease in the context of type 1 diabetes ( 53 ). The authors 
bred the DBA/2J. Akita  transgenic mouse model of type 1 
diabetes to 28 of the HMDP strains and examined histo-
logic and molecular parameters associated with diabetic 
nephropathy in diabetic mice and nondiabetic littermates. 
The most striking observed phenotype was urine albumin-
to-creatinine ratios, which increased 2- to 6-fold over eug-
lycemic control values for most strains, but more than 
10-fold in six strains, including 50- and 83-fold in two 
strains, NOD/ShiLtJ and CBA/J, respectively ( 53 ). 

 Other clinical traits 
 A variety of nonmetabolic traits are being studied in the 

HMDP. For example, the HMDP strains differ strikingly in 
hearing parameters and hearing loss due to noise. A num-
ber of loci were identifi ed in association studies ( 15, 54 ) 
and  Nox3  was shown to be critical for noise-induced hear-
ing loss ( 55 ). 

 Conditioned fear phenotypes and global transcript lev-
els for hippocampus and striatum were determined in the 
HMDP strains ( 17 ). A total of 27 behavioral quantitative 
trait loci were mapped and these results were integrated 
with eQTL results. Coexpression networks were con-
structed for hippocampus and striatum, and modules 
strongly associated with fear traits were identifi ed. Simi-
larities and differences in modules in the two brain re-
gions were examined ( 17 ). 

 BASIC STUDIES 

 Gene-by-environment interactions 
 While human GWASs have identifi ed many loci for met-

abolic and cardiovascular traits, a major limitation is the 
inability to examine environmental interactions. When 
the HMDP mice were challenged with various environ-
mental conditions, a high-fat/high-sucrose diet ( 12, 21 ), a 
high-fat/high-cholesterol diet ( 49 ), or isoproterenol treat-
ment ( 23 ), virtually all clinical traits examined and hun-
dreds of molecular traits, such as transcript levels, showed 
evidence of gene-by-environment (GxE) interactions (for 
example, see   Fig. 7  ).  Most striking were infl ammatory 

responses of peritoneal macrophage to bacterial LPS, where 
a number of hotspots affecting the responses of hundreds 
of genes were identifi ed ( 16 ). Because the majority of 
common genetic variation is regulatory rather than pro-
tein coding ( 56 ), it is not surprising that GxE interactions 
occur so frequently. It is likely that changes in transcrip-
tion factor binding related to sequence variation will be a 
major mechanism driving  cis -regulated GxE interactions 
such as those in  Fig. 7 , although any of the events that are 
critical for gene expression could be involved, including 
chromatin interactions, chromatin state, alternative splic-
ing, and posttranslational modifi cations. Many of the 
 trans -regulated effects could result from genetic differ-
ences affecting the metabolism of dietary components or 
drugs. The gut microbiome, for example, is likely to be an 
important mediator of environmental responses, as dis-
cussed in the section below. 

 Gene-by-gene interactions 
 The importance of gene-by-gene (GxG) interactions in 

common disease in humans has been controversial, but 
studies in mice strongly point to their importance ( 57, 58 ). 
The signifi cance of GxG interactions can be examined 
globally by comparing “broad sense” heritability (the sum 
of all genetic infl uences) with “narrow sense” heritability 
(the portion due to additive effects and not including GxG 
interactions). For example, a study of numerous traits in 
haploid yeast suggested that broad sense was substantially 
larger than narrow sense heritability for some traits but 
not others ( 59 ). Whereas such parameters are diffi cult to 
estimate in humans, they can be studied more accurately 
in mice because genetically identical replicates (members 
of inbred strains) are available and the environment can 
be controlled. Indeed, using the HMDP, traits such as heart 
failure and atherosclerosis appear to have considerably 
greater broad sense than narrow sense heritability ( 49 ). 

 Epigenetics 
 High-resolution genome scale epigenetic profi ling us-

ing next generation sequencing (ChIP-Seq, DNase-Seq, 
FAIRE-Seq, bisulfi te sequencing, etc.) has enabled analysis 
of the regulatory variation in which genetic variants are 
likely to act ( 60, 61 ). A variety of epigenetic marks in liver 
have been examined in a subset of the HMDP ( 62 ) and 
DNA methylation has been examined in 90 HMDP strains 
( 63, 64 ). Much of the epigenetic variation was found to be 
controlled in  cis  and was strongly associated with the ex-
pression levels of nearby genes, which were, in turn, associ-
ated with protein, metabolite, and clinical traits (see  Fig. 2  
for example).  Figure 2  shows an example of a DNA meth-
ylation that occurs near the  Apoa2  gene on chromosome 1. 
The degree of methylation is strongly associated with the 
levels of apoA2 protein and HDL cholesterol (apoA2 is the 
second-most abundant protein in HDL). In addition to  cis  
regulation, some instances of  trans  regulation were vali-
dated. For example, variable methylation of a cytosine-
phosphate-guanine (CpG) on chromosome 13 was associated 
with the degree of methylation at hundreds of sites 
throughout the genome, as well as the expression of many 
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methylation and complex clinical traits, such as HDL lev-
els, IR, obesity, and blood cell levels. For example,  Fig. 2E, 
F  shows the association of a methylation site on chromo-
some 1 with HDL cholesterol levels and expression levels 
of the nearby apoA-II gene ( Apoa2 ). For many complex 
traits, the associations with methylation were much stron-
ger than with any nearby SNPs. Whether such strong asso-
ciations result from effects on the expression of nearby 
genes or some other mechanism is unclear ( 64 ). More-
over, combinations of multiple methylation sites, identifi ed 

genes  . A strong candidate for mediating the effect was the 
nearby  Mtrr  gene, encoding methionine synthase reduc-
tase. The enzyme is part of the folate cycle, involved in the 
generation of methyl donors for DNA and histone meth-
ylation. To experimentally validate  Mtrr  as the causal gene, 
gene-trapped  Mtrr  mice with reduced gene expression 
were studied and found to affect a highly overlapping set 
of methylation sites ( 63 ). 

 The most striking fi nding from these studies was the 
strong association between certain variations in DNA 

  Fig. 7.  Gene-by-environment interactions in response to a high-fat high-sucrose (HF/HS) diet. Shown are adipose transcript levels for 
two genes, sorbitol dehydrogenase (A) and histone deacetylase 1 (B), in mice fed either the chow diet (black dots) or the HF/HS diet 
(colored dots). The strains are rank ordered by transcript levels on the chow diet and the transcript levels on the HF/HS diet are colored 
according to the genotype of the peak  cis -eQTL. In the case of sorbitol dehydrogenase, gene expression levels in mice with allele B are re-
pressed by the diet, whereas those with allele A are induced. In the case of histone deacetylase 1, the induction is much larger in mice with 
genotype A than genotype B.   
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controlled conditions (see  Fig. 2 ) and studies of metab-
olite levels have been performed for liver and plasma 
when mice were fed either chow or high-fat diets ( 8, 11, 
49 ). A number of conclusions emerged; for example, tri-
methylamine- N -oxide (TMAO) levels were found to be a 
strong predictor of atherosclerosis ( 49 ), as they are in hu-
mans. GWAS analyses resulted in the identifi cation of nu-
merous metabolite QTLs (mTQLs), and the causal genes 
for some of these differences were experimentally validated 
( 8 ). In a study of liver metabolites in mice fed a chow diet, 
40% of metabolites measured showed evidence for genetic 
regulation. In total, the 110 measured metabolites were 
found to be mapping signifi cantly to 240 loci, and 36 me-
tabolites were found to be signifi cantly associated with 
clinical traits ( 8 ). This work also highlighted the value of 
using the HMDP to identify and validate candidate genes 
regulating metabolite levels by integrating the transcript 
eQTLs with the metabolite QTLs. Following this recipe, 
the authors were able to identify the causal genes affecting 
 N -acetylglutamate and glycerol-3-phosphate levels in liver. 

 Host-gut microbiota interactions 
 There is now overwhelming evidence that gut microbes 

can contribute to metabolic and cardiovascular disorders 
( 66 ). A striking example is the association between levels 
of TMAO, a substance derived exclusively through the ac-
tion of gut microbiota and cardiovascular disease. As yet, 
however, which microbes contribute to disease traits and 
what factors determine the composition of gut microbiota 
are poorly understood. Genetics provides a potentially 
powerful approach to address such questions, and to that 
end, Parks, Org, and colleagues ( 21, 42 ) profi led gut mi-
crobiota using 16S rRNA gene sequencing from over 100 
HMDP strains. Remarkably, they observed very high heri-
tability of microbiota composition, in the range of 0.5 for 
most genera ( 42 ). They also observed a number of rela-
tionships between gut microbiota composition and clini-
cal traits. For example, a strong association between levels 
of  Akkermansia mucinophila , a common microbe that re-
sides in and digests the mucin layer of the intestine, and IR 
was observed ( 21 ). This was then tested experimentally by 
introducing the microbe into mice using gavage and, in-
deed, profound effects on IR and other metabolic traits 
were observed ( 42 ). In other studies, the composition of 
the gut microbiota was shown to contribute to differences 
in TMAO levels between inbred strains of mice ( 67, 68 ). 
Finally, cross-fostering studies, in which newborn mice are 
raised by foster mothers and consequently “inherit” their 
microbiota, suggested that differences in response to diet 
in the HMDP strains was due, in part, to the composition 
of the gut microbiota ( 42 ). Large human population stud-
ies of gut microbiota composition have been reported 
( 69 ) and others are underway but, given the very large im-
pact of diet and other environmental factors on gut micro-
biota, it will be challenging to tease out disease associations. 
The HMDP data constitute a powerful resource for further 
dissection of mechanistic host-gut microbiota interactions, 
enabling the formation of hypotheses that can then be ex-
amined in human studies. 

using linear regression modeling, were capable of pre-
dicting complex phenotypes, such as BMD and blood cell 
traits. Notably, many of the loci containing these methyla-
tion sites did not overlap signifi cantly with the SNP-based 
association ( 64 ). 

 Genetic control of protein abundance 
 Mapping protein levels as a quantitative trait (pQTL) is 

a critical aspect of understanding regulatory variation in 
the context of common disease. Recent advances in mass 
spectrometry-based proteomic methods have now enabled 
quantitation of thousands of proteins. One important 
question is the relationship between transcript levels and 
protein levels as a function of genetic variation. Whereas 
transcript-protein correlations are clearly very strong be-
tween different cell types, the perturbations introduced by 
common genetic variation are much more subtle. This is-
sue was evaluated in liver using the HMDP ( 7 ). Ghazal-
pour et al. ( 7 ) quantifi ed over 5,000 peptides in the HMDP 
using a liquid chromatography-mass spectrometry refer-
ence-based labeling approach. Based on this, a set of 485 
most reliable proteins were selected and compared with 
levels of the corresponding transcripts. Although, in some 
cases, the correspondence was excellent and many highly 
signifi cant pQTLs were mapped, about half of the protein-
transcript pairs exhibited little or no correlation, even 
among the most heritable variations in transcript levels. A 
somewhat stronger correspondence was observed in yeast 
intercross population using green fl uorescent protein tags 
to quantify single-cell protein abundance ( 59 ). Although 
technical factors undoubtedly contributed to the lack of 
correspondence, there are a number of ways in which pro-
tein levels might be regulated independently of transcript 
levels, including regulation of translation, codon constraint, 
RNA editing, alternative splicing, posttranslational modifi -
cations, and protein turnover. One particularly signifi cant 
mechanism may involve protein complexes; thus, proteins 
which form complexes with other proteins likely have a 
specifi ed stoichiometry, and if one protein is produced in 
excess of the other, it will likely undergo rapid degrada-
tion. In the study of Ghazalpour et al. ( 7 ), it is noteworthy 
that in the case of ribosomal proteins, many of which were 
detected, there was essentially no correspondence be-
tween transcript and protein levels  . Presumably, any such 
proteins produced in excess of the levels that could be in-
corporated into ribosomes would be rapidly degraded. 

 Regulation of metabolism 
 Recent advances in mass spectrometry and nuclear mag-

netic resonance have made high throughput analyses of 
hundreds of metabolites in biologic samples possible, and 
investigators have begun to utilize the relationships be-
tween metabolite levels and disease traits for use as bio-
markers or elucidation of disease mechanisms. Human 
population studies of plasma metabolites have identifi ed a 
number of disease associations and shown that levels of 
many metabolites are highly heritable ( 65 ). The HMDP 
offers an opportunity to integrate metabolite levels with 
epigenetic, transcriptomic, protein, and clinical data under 
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 Stem cells 
 Genetic factors controlling stem cell number, prolifera-

tion, and differentiation are poorly understood. Zhou et al. 
( 74 ) utilized a GWAS approach in the HMDP to examine 
quantitative variations affecting levels of hematopoietic 
stem progenitor cells (HSPCs). They obtained bone mar-
row mononuclear cells from 12-week-old male HMDP mice 
and examined the frequency of various HSPC populations 
using fl ow cytometric analysis of lineage-specifi c cell surface 
markers. The markers included lineage [Liu] Sca-1 + c-Kit +  
[LSK], the more immature LSKCD150  �  CD48  �   multipotent 
progenitors, and the most primitive LSKCD150 + CD48  �   
cells  . The frequencies of these varied approximately 120- to 
300-fold across the 108 HMDP strains surveyed. This varia-
tion was largely genetic, with heritabilities ranging from 0.7 
to 0.9. The three types of primitive HSPCs were correlated 
with each other and, the LSK and LSKCD150  �  CD48  �   were 
modestly correlated with total white cell counts and the 
numbers of lymphocytes and monocytes. GWAS analyses 
identifi ed multiple signifi cant loci, several containing 
strong candidates for each of the HSPC levels.  Hopx , located 
in a chromosome 5 locus Associated with LSKCD150 - CD48  �   
cells, was selected for further analysis based on correlation 
of its expression with HSPC levels and a strong  cis -eQTL. Its 
role was validated using knockout mice, which had de-
creased levels of LSKCD150  �  CD48  �   cells, but no differ-
ences in LSK or LSKCD150 + CD48  �   cells ( 74 ). 

 HMDP DATABASE AND ITS USE FOR 
CARDIOMETABOLIC RESEARCH 

 The data discussed above are organized on a server at 
UCLA and published data are available upon request from 
the corresponding author. Some of the data are also avail-
able through the Jax Phenome Database (phenome.jax.org) 
as well as the GeneNetwork database (www.genenetwork.

 Sex differences 
 Most common diseases, including metabolic and cardio-

vascular diseases, differ in prevalence between men and 
women ( 70 ). In mice, such differences can be examined 
in detail, and previous studies have revealed thousands of 
differences in gene expression between sexes ( 71 ), most 
of them resulting from hormonal effects ( 72 ). In the 
HMDP, most clinical traits exhibited striking differences 
between males and females. For example,   Fig. 8   shows IR, 
quantitated as homeostatic model assessment (HOMA)-
IR.  While there is considerable genetic variation, it is clear 
that in the majority of strains, HOMA-IR is greater in males 
( 12 ). While explanations for most of these differences are 
unknown, systems genetics approaches in the HMDP 
should be informative. For example, whereas in humans, 
males are more susceptible to atherosclerosis than females, 
the reverse is true in mice. Studies of a subset of HMDP 
mice revealed that levels of TMAO [a strong contributor 
to atherosclerosis, in humans and mice ( 49 )] were much 
higher in females than in males, and analysis of hepatic 
transcript levels showed that this was due largely to greatly 
decreased levels of the enzyme, FMO3, in male mice due 
to repression by testosterone ( 67 ). In contrast, in humans, 
FMO3 expression is similar in males and females. 

 Blood cell levels 
 The levels of the major blood cell groups, red cells, lym-

phocytes, monocytes, and granulocytes, vary considerably 
among the HMDP strains ( 22 ). A number of loci for each 
cell type were identifi ed by GWASs, several of which over-
lap with loci observed in human studies. For example, fi ve 
red cell trait loci were identifi ed in the HMDP and four of 
these correspond to red cell loci reported in a recent hu-
man GWAS ( 73 ). A major locus affecting mean corpuscu-
lar volume and several other red cell traits mapped to 
 Hbb-b1 , a likely causal gene that is part of the  � -globin clus-
ter on chromosome 7 ( 22 ). 

  Fig. 8.  Sex differences in IR in the HMDP. HOMA-IR, a measure of IR based on glucose and insulin levels, was determined in the HMDP 
for males and females. In addition to large differences between strains, females clearly tended to be less insulin resistant than males. Re-
produced from ( 12 ), with permission.   
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ucla.edu/) ( 75 ). Below, we briefl y outline how the data-
base can be interrogated to address certain questions. The 
basic operations used are correlation, genetic mapping, 
and statistical modeling ( 26 ) 

org). Also, precomputed data, including trait-genome asso-
ciations (for clinical and molecular traits), trait correlations, 
and expression data across tissues, can be easily searched 
at the Systems Genetics Resource (https://systems.genetics.

  Fig. 9.  Application of the HMDP database to investigate genes or traits of interest. Hypothetical examples of how information from the 
HMDP can be utilized to explore relationships between genes (A) and traits (B) of interest and their relationships with multiple layers of 
information. For each layer, correlation analysis can be used to ask a specifi c question and interpret results which could elucidate novel 
functions and/or relationships of genes or traits of interest.   
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 A large body of data has now been collected and is freely 
available to interested researchers. This includes hun-
dreds of genome-wide signifi cant loci, most containing 
less than a dozen genes, along with expression, proteomic, 
and metabolomics data to narrow the list of likely candi-
dates. Apart from mapping, the lists of genes correlated 
with clinical traits contain many of the genes known to 
contribute to the traits [for example ( 21 )] and is undoubt-
edly highly enriched for genes yet to be discovered. The 
resource also presents opportunities to examine funda-
mental issues such as GxE and GxG interactions, sex dif-
ferences, and host-gut microbiota interactions.  
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 CONCLUSIONS 
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