152 research outputs found

    In-situ mechanical weakness of subducting sediments beneath a plate boundary décollement in the Nankai Trough

    Get PDF
    The study investigates the in-situ strength of sediments across a plate boundary décollement using drilling parameters recorded when a 1180-m-deep borehole was established during International Ocean Discovery Program (IODP) Expedition 370, Temperature-Limit of the Deep Biosphere off Muroto (T-Limit). Information of the in-situ strength of the shallow portion in/around a plate boundary fault zone is critical for understanding the development of accretionary prisms and of the décollement itself. Studies using seismic reflection surveys and scientific ocean drillings have recently revealed the existence of high pore pressure zones around frontal accretionary prisms, which may reduce the effective strength of the sediments. A direct measurement of in-situ strength by experiments, however, has not been executed due to the difficulty in estimating in-situ stress conditions. In this study, we derived a depth profile for the in-situ strength of a frontal accretionary prism across a décollement from drilling parameters using the recently established equivalent strength (EST) method. At site C0023, the toe of the accretionary prism area off Cape Muroto, Japan, the EST gradually increases with depth but undergoes a sudden change at ~ 800 mbsf, corresponding to the top of the subducting sediment. At this depth, directly below the décollement zone, the EST decreases from ~ 10 to 2 MPa, with a change in the baseline. This mechanically weak zone in the subducting sediments extends over 250 m (~ 800–1050 mbsf), corresponding to the zone where the fluid influx was discovered, and high-fluid pressure was suggested by previous seismic imaging observations. Although the origin of the fluids or absolute values of the strength remain unclear, our investigations support previous studies suggesting that elevated pore pressure beneath the décollement weakens the subducting sediments

    Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy

    Get PDF
    Archaeal anaerobic methanotrophs (“ANME”) and sulfate-reducing Deltaproteobacteria (“SRB”) form symbiotic multicellular consortia capable of anaerobic methane oxidation (AOM), and in so doing modulate methane flux from marine sediments. The specificity with which ANME associate with particular SRB partners in situ, however, is poorly understood. To characterize partnership specificity in ANME-SRB consortia, we applied the correlation inference technique SparCC to 310 16S rRNA amplicon libraries prepared from Costa Rica seep sediment samples, uncovering a strong positive correlation between ANME-2b and members of a clade of Deltaproteobacteria we termed SEEP-SRB1g. We confirmed this association by examining 16S rRNA diversity in individual ANME-SRB consortia sorted using flow cytometry and by imaging ANME-SRB consortia with fluorescence in situ hybridization (FISH) microscopy using newly-designed probes targeting the SEEP-SRB1g clade. Analysis of genome bins belonging to SEEP-SRB1g revealed the presence of a complete nifHDK operon required for diazotrophy, unusual in published genomes of ANME-associated SRB. Active expression of nifH in SEEP-SRB1g within ANME-2b—SEEP-SRB1g consortia was then demonstrated by microscopy using hybridization chain reaction (HCR-) FISH targeting nifH transcripts and diazotrophic activity was documented by FISH-nanoSIMS experiments. NanoSIMS analysis of ANME-2b—SEEP-SRB1g consortia incubated with a headspace containing CH₄ and ¹⁵N₂ revealed differences in cellular ¹⁵N-enrichment between the two partners that varied between individual consortia, with SEEP-SRB1g cells enriched in ¹⁵N relative to ANME-2b in one consortium and the opposite pattern observed in others, indicating both ANME-2b and SEEP-SRB1g are capable of nitrogen fixation, but with consortium-specific variation in whether the archaea or bacterial partner is the dominant diazotroph

    Genomic Reconstruction of an Uncultured Hydrothermal Vent Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation

    Get PDF
    Hydrothermal vents are an important contributor to marine biogeochemistry, producing large volumes of reduced fluids, gasses, and metals and housing unique, productive microbial and animal communities fueled by chemosynthesis. Methane is a common constituent of hydrothermal vent fluid and is frequently consumed at vent sites by methanotrophic bacteria that serve to control escape of this greenhouse gas into the atmosphere. Despite their ecological and geochemical importance, little is known about the ecophysiology of uncultured hydrothermal vent-associated methanotrophic bacteria. Using metagenomic binning techniques, we recovered and analyzed a near-complete genome from a novel gammaproteobacterial methanotroph (B42) associated with a white smoker chimney in the Southern Lau basin. B42 was the dominant methanotroph in the community, at ∼80x coverage, with only four others detected in the metagenome, all on low coverage contigs (7x–12x). Phylogenetic placement of B42 showed it is a member of the Methylothermaceae, a family currently represented by only one sequenced genome. Metabolic inferences based on the presence of known pathways in the genome showed that B42 possesses a branched respiratory chain with A- and B-family heme copper oxidases, cytochrome bd oxidase and a partial denitrification pathway. These genes could allow B42 to respire over a wide range of oxygen concentrations within the highly dynamic vent environment. Phylogenies of the denitrification genes revealed they are the result of separate horizontal gene transfer from other Proteobacteria and suggest that denitrification is a selective advantage in conditions where extremely low oxygen concentrations require all oxygen to be used for methane activation

    Taphonomy of Biosignatures in Microbial Mats on Little Ambergris Cay, Turks and Caicos Islands

    Get PDF
    Microbial mats are taxonomically and metabolically diverse microbial ecosystems, with a characteristic layering that reflects vertical gradients in light and oxygen availability. Silicified microbial mats in Proterozoic carbonate successions are generally interpreted in terms of the surficial, mat building community. However, information about biodiversity in the once-surface-layer can be lost through decay as the mats accrete. To better understand how information about surface microbial communities is impacted by processes of decay within the mat, we studied microbial mats from Little Ambergris Cay, Turks and Caicos Islands. We used molecular techniques, microscopy and geochemistry to investigate microbial mat taphonomy – how processes of degradation affect biological signatures in sedimentary rocks, including fossils, molecular fossils and isotopic records. The top < 1 cm of these mats host cyanobacteria-rich communities overlying and admixed with diverse bacterial and eukaryotic taxa. Lower layers contain abundant, often empty, sheaths of large filamentous cyanobacteria, preserving their record as key mat-builders. Morphological remains and free lipid biomarkers of several bacterial groups, as well as diatoms, arthropods, and other eukaryotes also persist in lower mat layers, although at lower abundances than in surface layers. Carbon isotope signatures of organic matter were consistent with the majority of the biomass being sourced from CO2-limited cyanobacteria. Porewater sulfide sulfur isotope values were lower than seawater sulfate sulfur isotope values by ∼45–50‰, consistent with microbial sulfate reduction under sulfate-replete conditions. Our findings provide insight into how processes of degradation and decay bias biosignatures in the geological record of microbial mats, especially mats that formed widely during the Proterozoic (2,500–541 million years ago) Eon. Cyanobacteria were the key mat-builders, their robust and cohesive fabric retained at depth. Additionally, eukaryotic remains and eukaryotic biosignatures were preserved at depth, which suggests that microbial mats are not inherently biased against eukaryote preservation, either today or in the past

    Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop

    Get PDF
    Nanomaterials and their associated technologies hold promising opportunities for the development of new materials and applications in a wide variety of disciplines, including medicine, environmental remediation, waste treatment, and energy conservation. However, current information regarding the environmental effects and health risks associated with nanomaterials is limited and sometimes contradictory. This article summarizes the conclusions of a 2008 NATO workshop designed to evaluate the wide-scale implications (e.g., benefits, risks, and costs) of the use of nanomaterials on human health and the environment. A unique feature of this workshop was its interdisciplinary nature and focus on the practical needs of policy decision makers. Workshop presentations and discussion panels were structured along four main themes: technology and benefits, human health risk, environmental risk, and policy implications. Four corresponding working groups (WGs) were formed to develop detailed summaries of the state-of-the-science in their respective areas and to discuss emerging gaps and research needs. The WGs identified gaps between the rapid advances in the types and applications of nanomaterials and the slower pace of human health and environmental risk science, along with strategies to reduce the uncertainties associated with calculating these risks

    Ecological inference using data from accelerometers needs careful protocols

    Get PDF
    1. Accelerometers in animal-attached tags are powerful tools in behavioural ecology, they can be used to determine behaviour and provide proxies for movement-based energy expenditure. Researchers are collecting and archiving data across systems, seasons and device types. However, using data repositories to draw ecological inference requires a good understanding of the error introduced according to sensor type and position on the study animal and protocols for error assessment and minimisation. 2. Using laboratory trials, we examine the absolute accuracy of tri-axial accelerometers and determine how inaccuracies impact measurements of dynamic body acceleration (DBA), a proxy for energy expenditure, in human participants. We then examine how tag type and placement affect the acceleration signal in birds, using pigeons Columba livia flying in a wind tunnel, with tags mounted simultaneously in two positions, and back- and tail-mounted tags deployed on wild kittiwakes Rissa tridactyla. Finally, we present a case study where two generations of tag were deployed using different attachment procedures on red-tailed tropicbirds Phaethon rubricauda foraging in different seasons. 3. Bench tests showed that individual acceleration axes required a two-level correction to eliminate measurement error. This resulted in DBA differences of up to 5% between calibrated and uncalibrated tags for humans walking at a range of speeds. Device position was associated with greater variation in DBA, with upper and lower back-mounted tags varying by 9% in pigeons, and tail- and back-mounted tags varying by 13% in kittiwakes. The tropicbird study highlighted the difficulties of attributing changes in signal amplitude to a single factor when confounding influences tend to covary, as DBA varied by 25% between seasons. 4. Accelerometer accuracy, tag placement and attachment critically affect the signal amplitude and thereby the ability of the system to detect biologically meaningful phenomena. We propose a simple method to calibrate accelerometers that can be executed under field conditions. This should be used prior to deployments and archived with resulting data. We also suggest a way that researchers can assess accuracy in previously collected data, and caution that variable tag placement and attachment can increase sensor noise and even generate trends that have no biological meaning

    Minimizing Errors in RT-PCR Detection and Quantification of SARS-CoV-2 RNA for Wastewater Surveillance

    Get PDF
    Wastewater surveillance for pathogens using the reverse transcription-polymerase chain reaction (RT-PCR) is an effective, resource-efficient tool for gathering additional community-level public health information, including the incidence and/or prevalence and trends of coronavirus disease-19 (COVID-19). Surveillance of SARS-CoV-2 in wastewater may provide an early-warning signal of COVID-19 infections in a community. The capacity of the world’s environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is rapidly increasing. However, there are no standardized protocols nor harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can lead to false-positive and -negative errors in the surveillance of SARS-CoV-2, culminating in recommendations and strategies that can be implemented to identify and mitigate these errors. Recommendations include, stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, amplification inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly during a low incidence of SARS-CoV-2 in wastewater. Corrective and confirmatory actions must be in place for inconclusive and/or potentially significant results (e.g., initial onset or reemergence of COVID-19 in a community). It will also be prudent to perform inter-laboratory comparisons to ensure results are reliable and interpretable for ongoing and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance was demonstrated during this global crisis. In the future, wastewater will play an important role in the surveillance of a range of other communicable diseases.Highlights: Harmonized QA/QC procedures for SARS-CoV-2 wastewater surveillance are lacking; Wastewater analysis protocols are not optimized for trace analysis of viruses; False-positive and -negative errors have consequences for public health responses; Inter-laboratory studies utilizing standardized reference materials and protocols are needed.info:eu-repo/semantics/publishedVersio

    The diagnostic utility of clinical exome sequencing in 60 patients with hearing loss disorders: A single‐institution experience

    Get PDF
    From Wiley via Jisc Publications RouterHistory: received 2020-12-21, rev-recd 2021-04-08, accepted 2021-05-08, pub-electronic 2021-07-05Article version: VoRPublication status: PublishedFunder: Mexico’s National Council of Science and Technology; Grant(s): (CONACyT)‐392996Funder: Peter Mount award (Manchester University NHS Foundation Trust); Grant(s): G70658Funder: Data Driven Award (Manchester University NHS Foundation Trust); Grant(s): NH_SY_020419Funder: Manchester NIHR BRC; Grant(s): BRC‐1215‐20007Funder: Wellcome Trust; Grant(s): 200990/Z/16/
    corecore