407 research outputs found

    Long Term Monitoring of CFA Energy Pile Schemes in the UK

    Get PDF
    Energy pile schemes involve the use of structural foundations as heat exchangers in a ground source heat pump system. Such schemes are attractive, as they reduce energy consumption compared with traditional building heating and cooling systems. As energy prices increase and governments introduce subsidies they are also proving increasingly economically attractive. Additionally, energy piles can contribute to reducing the carbon dioxide emissions associated with a development. However, this approach to heating and cooling building remains relatively novel and the lack of published long term performance data remains a barrier to further implementation. Two issues remain to be addressed by long term monitoring. First, the need for a database of operational energy piles schemes were the energy performance is proven over many years. Secondly, availability of long term datasets of pile thermal behavior that can be used to validate design approaches and tools and hence encourage less conservative design practices. This paper presents the initial results from a study aimed at tackling these issues through long term instrumentation and monitoring of two energy pile schemes in the United Kingdom

    Single particle multipole expansions from Micromagnetic Tomography

    Get PDF
    Micromagnetic tomography aims at reconstructing large numbers of individual magnetizations of magnetic particles from combining high-resolution magnetic scanning techniques with micro X-ray computed tomography (microCT). Previous work demonstrated that dipole moments can be robustly inferred, and mathematical analysis showed that the potential field of each particle is uniquely determined. Here, we describe a mathematical procedure to recover higher orders of the magnetic potential of the individual magnetic particles in terms of their spherical harmonic expansions (SHE). We test this approach on data from scanning superconducting quantum interference device microscopy and microCT of a reference sample. For particles with high signal-to-noise ratio of the magnetic scan we demonstrate that SHE up to order n=3n=3 can be robustly recovered. This additional level of detail restricts the possible internal magnetization structures of the particles and provides valuable rock magnetic information with respect to their stability and reliability as paleomagnetic remanence carriers. Micromagnetic tomography therefore enables a new approach for detailed rock magnetic studies on large ensembles of individual particles.Comment: 21 pages, 4 Figures, 3 Tables. For Supplemental Material see "Ancillary files" in this arxiv websit
    • …
    corecore