72 research outputs found

    Urgent matters in the emergency room when facing COVID-19

    Get PDF
    N/

    Contrasting nutritional acclimation of sugar maple (Acer saccharum Marsh.) and red maple (Acer rubrum L.) to increasing conifers and soil acidity as demonstrated by foliar nutrient balances

    Get PDF
    Sugar maple (Acer saccharum Marshall, SM) is believed to be more sensitive to acidic and nutrient-poor soils associated with conifer-dominated stands than red maple (Acer rubrum L., RM). Greater foliar nutrient use efficiency (FNUE) of RM is likely the cause for this difference. In the context of climate change, this greater FNUE could be key in favoring northward migration of RM over SM. We used the concept of foliar nutrient balances to study the nutrition of SM and RM seedlings along an increasing gradient in forest floor acidity conditioned by increasing proportions of conifers (pH values ranging from 4.39 under hardwoods, to 4.29 under mixed hardwood-conifer stands and 4.05 under conifer-dominated stands). Nutrients were subjected to isometric log-ratio (ilr) transformation, which views the leaf as one closed system and considers interactions between nutrients. The ilr method eliminates numerical biases and weak statistical inferences based on raw or “operationally” log-transformed data. We analyzed foliar nutrients of SM and RM seedlings and found that the [Ca,Mg,K| P,N] and [Ca,Mg| K] balances of SM seedlings were significantly different among soil acidity levels, whereas they did not vary for RM seedlings. For SM seedlings, these differences among soil acidity levels were due to a significant decrease in foliar Ca and Mg concentrations with increasing forest floor acidity. Similar differences in foliar balances were also found between healthy and declining SM stands estimated from literature values. Conversely, foliar balances of RM seedlings did not differ among soil acidity levels, even though untransformed foliar nutrient concentrations were significantly different. This result highlights the importance of using ilr transformation, since it provides more sensitive results than standard testing of untransformed nutrient concentrations. The lower nutrient requirements of RM and its greater capacity to maintain nutrient equilibrium are factors that could explain its competitive success and recent northward expansion. This study underscores the importance of using nutrient balances to study the redistribution of plant species in natural ecosystems under climate change

    A value-based comparison of the management of ambulatory respiratory diseases in walk-in clinics, primary care practices, and emergency departments : protocol for a multicenter prospective cohort study

    Get PDF
    Background: In Canada, 30%-60% of patients presenting to emergency departments are ambulatory. This category has been labeled as a source of emergency department overuse. Acting on the presumption that primary care practices and walk-in clinics offer equivalent care at a lower cost, governments have invested massively in improving access to these alternative settings in the hope that patients would present there instead when possible, thereby reducing the load on emergency departments. Data in support of this approach remain scarce and equivocal. Objective: The aim of this study is to compare the value of care received in emergency departments, walk-in clinics, and primary care practices by ambulatory patients with upper respiratory tract infection, sinusitis, otitis media, tonsillitis, pharyngitis, bronchitis, influenza-like illness, pneumonia, acute asthma, or acute exacerbation of chronic obstructive pulmonary disease. Methods: A multicenter prospective cohort study will be performed in Ontario and Québec. In phase 1, a time-driven activity-based costing method will be applied at each of the 15 study sites. This method uses time as a cost driver to allocate direct costs (eg, medication), consumable expenditures (eg, needles), overhead costs (eg, building maintenance), and physician charges to patient care. Thus, the cost of a care episode will be proportional to the time spent receiving the care. At the end of this phase, a list of care process costs will be generated and used to calculate the cost of each consultation during phase 2, in which a prospective cohort of patients will be monitored to compare the care received in each setting. Patients aged 18 years and older, ambulatory throughout the care episode, and discharged to home with one of the aforementioned targeted diagnoses will be considered. The estimated sample size is 1485 patients. The 3 types of care settings will be compared on the basis of primary outcomes in terms of the proportion of return visits to any site 3 and 7 days after the initial visit and the mean cost of care. The secondary outcomes measured will include scores on patient-reported outcome and experience measures and mean costs borne wholly by patients. We will use multilevel generalized linear models to compare the care settings and an overlap weights approach to adjust for confounding factors related to age, sex, gender, ethnicity, comorbidities, registration with a family physician, socioeconomic status, and severity of illness. Results: Phase 1 will begin in 2021 and phase 2, in 2023. The results will be available in 2025. Conclusions: The end point of our program will be for deciders, patients, and care providers to be able to determine the most appropriate care setting for the management of ambulatory emergency respiratory conditions, based on the quality and cost of care associated with each alternative

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Integrated immunovirological profiling validates plasma SARS-CoV-2 RNA as an early predictor of COVID-19 mortality.

    Full text link
    peer reviewedDespite advances in COVID-19 management, identifying patients evolving toward death remains challenging. To identify early predictors of mortality within 60 days of symptom onset (DSO), we performed immunovirological assessments on plasma from 279 individuals. On samples collected at DSO11 in a discovery cohort, high severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA (vRNA), low receptor binding domain–specific immunoglobulin G and antibody-dependent cellular cytotoxicity, and elevated cytokines and tissue injury markers were strongly associated with mortality, including in patients on mechanical ventilation. A three-variable model of vRNA, with predefined adjustment by age and sex, robustly identified patients with fatal outcome (adjusted hazard ratio for log-transformed vRNA = 3.5). This model remained robust in independent validation and confirmation cohorts. Since plasma vRNA’s predictive accuracy was maintained at earlier time points, its quantitation can help us understand disease heterogeneity and identify patients who may benefit from new therapies

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Low light availability associated with American beech is the main factor for reduced sugar maple seedling Survival and growth rates in a hardwood forest of southern Quebec

    Get PDF
    Several recent studies have reported a marked increase in American beech dominance (Fagus grandifolia Ehrh.) relative to sugar maple (Acer saccharum Marsh.) in late successional forests of North America. However, many factors have been proposed to explain this sudden shift in tree species composition. We investigated the microsite factors responsible for maple regeneration failure under maple-beech stands, focusing on both light availability and soil conditions. The survival and growth of maple seedlings planted in the natural soil and in pots with enriched soil were monitored for two years, as well as foliar nutrition and herbivory damages of natural seedlings. The results indicate that low light availability associated with the presence of beech is the primary factor leading to maple regeneration failures. Soil nutrient availability and foliar nutrition of natural seedlings did not differ between forest types. Yet, the results indicate that factors such as allelopathy and preferential herbivory on maple seedlings under beech could be superimposed effects that hinder maple regeneration. Under similar forests, a control of beech sapling abundance in the understory followed by selection cutting could be one way to promote and maintain maple populations in the longer term

    Conifer presence may negatively affect sugar maple’s ability to migrate into the boreal forest through reduced foliar nutritional status

    Get PDF
    The discipline of ecology suffers from a lack of knowledge of non-climatic factors (for example, plant–soil, plant–plant and plant–insect interactions) to predict tree species range shifts under climate change. The next generation of simulation models of forest response to climate change must build upon local observations of species interactions and growth along climatic gradients. We examined whether sugar maple (Acer saccharum) seedlings were disadvantaged with respect to soil nutrient uptake under coniferous canopies, as this species would need to migrate northward into conifer-dominated forests in response to climate change. An experimental design was applied to 3 sites, forming the largest possible latitudinal/climatic gradient for sugar maple in Quebec (Canada) and isolating the effect of conifer presence on its seedling’s nutritional status. We tested whether: (1) both soil and climate and (2) presence of conifers affected foliar nutrient levels of sugar maple seedlings. Climate and soil (through pH) strongly affected nutrient availability for sugar maple seedlings and predicted 63.7% of their foliar nutrient variability. When controlling for site effects, we found a significant negative effect of conifers on foliar Ca and Mg levels of maple seedlings, which can adversely affect their overall health and vigour. When considering projected modifications of the forest environment due to climate change, we suggest that northward migration of sugar maple will be negatively affected by the presence of conifers through reduced foliar nutrition
    • 

    corecore