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SUMMARY 

The discipline of ecology suffers from a lack of knowledge of non-climatic factors (e.g. plant-

soil, plant-plant and plant-insect interactions) to predict tree species range shifts under climate 

change. The next generation of simulation models of forest response to climate change must 

build upon local observations of species interactions and growth along climatic gradients. We 

examined whether sugar maple (Acer saccharum) seedlings were disadvantaged with respect 

to soil nutrient uptake under coniferous canopies, as this species would need to migrate 

northward into conifer-dominated forests in response to climate change. An experimental 

design was applied to 3 sites, forming the largest possible latitudinal/climatic gradient for 

sugar maple in Quebec (Canada) and isolating the effect of conifer presence on its seedling’s 

nutritional status. We tested whether: (1) both soil and climate; and (2) presence of conifers 

affected foliar nutrient levels of sugar maple seedlings. Climate and soil (through pH) 

strongly affected nutrient availability for sugar maple seedlings and predicted 63.7% of their 

foliar nutrient variability. When controlling for site effects, we found a significant negative 

effect of conifers on foliar Ca and Mg levels of maple seedlings, which can adversely affect 

their overall health and vigour. When considering projected modifications of the forest 

environment due to climate change, we suggest that northward migration of sugar maple will 

be negatively affected by the presence conifers through reduced foliar nutrition.  

 

Key words: Acer saccharum, seedlings, foliar nutrition, ecological gradient, calcium, 

magnesium, species interactions 
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INTRODUCTION 

Climate records indicate that surface air temperatures have increased globally (~0.85 °C) 

since the late 1800s, and should continue to rise (≥1.5 °C) until the end of the 21st century. 

due to an increase in radiative forcing (Hartmann et al., 2013). Simulation models also 

suggest that available moisture and the severity of drought will respectively decrease and 

increase in the near future in many parts of the world (Dai, 2011; Van Oldenborgh et al., 

2013). Such changes in climate are creating physiological constraints that force plant species 

to find new ecological optima by shifting their ranges to higher elevations and latitudes.  

Literature reviews suggest that changes in physiology, phenology, growth and distribution of 

plants have occurred over the last 30-40 years (Rosenzweig et al., 2008; Chen et al., 2011; 

Allstadt et al., 2015). Thus far, these changes were most easily observed at the edges of their 

altitudinal distributions. For example, Beckage et al. (2008) documented a mean progression 

of 100 m of temperate hardwoods into the altitudinal boreal forest that occurred over the last 

40 years in Vermont, USA.  

Studies supporting a climate-mediated northward shift in plant species are based almost 

entirely on modelling. For example, Iverson et al. (2008) simulated habitat shifts of 134 tree 

species in the eastern United States, with about 50 % gaining habitat and 40 % losing habitat 

under a conservative climate change scenario. More recently, Zhu et al. (2012) compared 

present latitudes of seedlings and adult trees in the eastern USA at their range limits as 

evidence for redistribution. Their results suggest that species may be adapting poorly to 

climate change, given a lack of evidence for a generalised climate-mediated northward shift 

and range contraction for some species, which emphasises the need for field studies that 

assess the impediments to forests that are posed by climate change.   

For a tree species to colonise an area with sufficient rapidity to compensate for its projected 

loss in habitat, it must quickly disperse its seeds over rather long distances and acclimate to 
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conditions other than climate. Seed dispersal rates are known for most Canadian tree species 

(Clark et al., 1998). However, we have a poor understanding of how trees adapt to new 

growing environments. When the Wisconsin ice sheets retreated, thus ending the last 

glaciation, plant species migrated northward into pristine and gradually organising 

environments (Jackson and Overpeck, 2000). Over centuries, resident ecosystems have 

developed into complex systems which have led to positive feedbacks in plant communities 

(Wilson and Agnew, 1992). Positive feedbacks imply that certain species have created 

conditions in the resident environment (e.g., soil pH, water, nutrient and light availability, 

allelopathic compounds, fire disturbance, etc.) that increase their competitive advantage, but 

such conditions complicate the establishment, nutrition, survival and growth of migrating 

species. Consequently, understanding the effects of resident soils (Lafleur et al., 2010) and 

resident plant species (Ettinger and HilleRisLambers, 2013) on migrating plants is crucial for 

predicting plant species redistribution under climate change. Most current models fail to 

simulate recent forest mortality episodes and species migration rates; they are only calibrated 

to regional climates and do not consider the reorganisation of interactions and feedback cycles 

between species and site conditions (Clark et al., 2014).  

Sugar maple (Acer saccharum Marshall; hereafter, referred to as “maple”) and balsam fir 

(Abies balsamea [L.] Miller) coexist within the deciduous-boreal ecotone. The presence of 

isolated islands of maple beyond its northern range suggests that it is not solely limited by 

climate (Graignic et al., 2014). However, maple is not dominant in the boreal forest, which 

means that at the very least climate has reduced its competitiveness relative to conifers. 

Goldblum & Rigg (2005) proposed that maple has a greater potential for increased growth 

under climate change at the deciduous-boreal ecotone of Ontario, Canada, than does balsam 

fir or white spruce (Picea glauca [Moench] Voss). This response potential could enhance the 

future status of maple at its northern limit. Yet, other factors such as herbivory (Salk et al., 
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2011), seed predation (Hsia and Francl, 2009), insects and pathogens (Cleavitt et al., 2011), 

and the probable reduction of arbuscular-mycorhizae fungi associations with maple roots, 

which are sensitive to low soil pH values (Coughlan et al., 2000), must also have limited 

maple establishment in the boreal forest.  

Sugar maple is also a Ca-demanding tree species, and its growth and distribution are likely 

controlled by soil Ca availability (van Breemen et al., 1997). Graignic et al. (2014) proposed 

that the nutrient-poor boreal soils characterised by thick litter layers can limit northward 

maple migration under climate change by affecting its early stages of seedling establishment. 

In fact, maple declines in eastern North America are linked to low soil Ca availability. Low 

available Ca concentrations, in turn, can be caused by Ca leaching and imbalances due to high 

Al and Mn activity in the soil solution (which is induced by atmospheric acid deposition (St. 

Clair et al., 2008; Long et al., 2009)) as well as exports of Ca in harvested biomass (Bélanger 

et al., 2002). 

The main objective of this study was to determine whether foliar nutrients of maple seedlings 

are negatively affected when growing under an increasing proportion of coniferous trees at 

three different latitudes in southern Quebec. The latitudinal responses were a means of 

assessing the nutritional acclimation potential of maple seedlings to the soil conditions 

prevailing in the boreal forest. We hypothesised that: (1) both soil and climate would affect 

foliar nutrient levels of maple seedlings; and (2) foliar nutrient levels, notably Ca, would be 

adversely affected by the presence of coniferous tree species. 

MATERIALS AND METHODS 

Study sites 

Three sites were identified in southern Quebec for the study, where maple is found with an 

increasing proportion of conifers. The first was located near Windsor in the Eastern 

Townships (45°34'N, 71°57'W). The second site was at Station de Biologie des Laurentides 
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(SBL) of the Université de Montréal, which is located in St. Hippolyte (45°59'N, 74°00'W). 

The third site was at Lac Labelle, which is located in the Abitibi-Témiscamingue region 

(48°10'N, 79°27'W) (Fig. 1). These sites form the largest possible latitudinal/climatic gradient 

for maple in Quebec. The southernmost site, Windsor, lies within the southern limit of the 

sugar maple-basswood (Tilia americana L.) domain. The St. Hippolyte site is located in the 

sugar maple-yellow birch (Betula alleghaniensis Britton) domain of the lower Laurentians. 

This is the northernmost deciduous forest domain in Quebec, and the St. Hippolyte site is 

located near its northern limit, at the edge of the deciduous-boreal forest transition (Saucier et 

al., 2009). In both deciduous domains, windthrow is a major natural disturbance that affects 

forest dynamics.  

The northernmost site, Lac Labelle, is found within the balsam fir-white birch (Betula 

papyrifera Marshall) bioclimatic domain, which is typically dominated by coniferous species 

(Saucier et al., 2009). Lac Labelle is well outside the natural distribution of maple and, thus, is 

found only in small islets. The presence of a maple population at this location is exceptional 

and is likely due to a site history that spared the forest from severe fires. Catastrophic wildfire 

and insect pest irruptions are the principal disturbances in the fir-birch domain. 

The BioSIM model (Régnière and Bolstad, 1994) was used to estimate annual degree-days 

(base 5°C), precipitation, temperature and other climate variables at the three study sites 

based on the last ten years (2003-2013 period). Model software can be obtained from 

ftp://ftp.cfl.forestry.ca/regniere/software/BioSIM/. Using site elevation, latitude and 

longitude, BioSIM uses multiple regressions to extrapolate data from the closest climatic 

stations. BioSIM yields climatic data that are statistically indistinguishable from measured 

data (Régnière and St-Amant, 2007). Site coordinates that were used as input data and outputs 

from BioSIM are presented in Table 1. Variation in climate variables that are simulated by 

BioSIM is associated with the latitudinal range of the three sites. Mean annual temperature, 
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annual degree-days above 5 °C, annual number of frost-free days, and rainfall are similar 

between the two most southern sites, viz., Windsor and St. Hippolyte, and much higher than 

the northernmost site, Lac Labelle (Table 1). 

Experimental design 

At each site, foliar nutrient levels of maple seedlings and soil pH, moisture and nutrient 

availability were examined under an increasing proportion of conifers. Within each site, four 

plots (50 m × 50 m) were delineated for each of the three forest canopies: (1) hardwood 

stands of maple and birch; (2) mixed hardwood-conifer stands with maple, birch and conifers; 

and (3) conifer-dominated stands. Plot selection was based on maple seedlings and saplings 

presence (3 sites × 3 species compositions × 4 replicates = 36 plots). Species in the conifer-

dominated stands varied between sites. The Lac Labelle plots were covered with balsam fir, 

eastern white cedar (Thuja occidentalis L.) and a few white or paper birch trees. In St. 

Hippolyte, the forest cover consisted of balsam fir, eastern white cedar, eastern white pine 

(Pinus strobus L.), and spruce species, together with a few white or paper birch and red maple 

(Acer rubrum L.). The Windsor site contained balsam fir, eastern hemlock (Tsuga canadensis 

L.), white birch and a few eastern white cedar trees. Basal area of each plot was measured for 

each tree species present on stems with a diameter at breast height ≥ 9 cm. Appendix I shows 

the percentage contributions of each species to total basal area by forest types.  

In each plot, maple leaves were sampled in early August of 2013 from five seedlings after 

recording their total height at ground level. During the same period, samples of the forest 

floor and upper B horizons (first 15 cm) were collected from the soil profile at five different 

locations within each plot. Ion-exchange resin sticks, i.e., Plant Root Simulators (PRSTM, 

Western Ag, Saskatoon, SK, Canada), were used to assess ionic activity, namely NO3
-, NH4

+, 

H2PO4
-, Ca2+, Mg2+, K+, Al3+, Fe3+ and Mn2+. The cationic or anionic resin in these probes 

consists of a thin membrane (surface area = 1.5 cm × 5.5 cm) that is encased in a thin plastic 
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support (3 cm × 15 cm). Three pairs of cation and anion probes were inserted vertically to a 

depth of 10 cm into the B horizon at random locations within each plot with minimal 

disturbance to the overlying forest floor. They were installed in early June 2013 and collected 

8 weeks later. Rather than a static measurement at a particular point in time that is provided 

by conventional soil extraction methods, PRS probes can be deployed in a manner that allows 

for dynamic measurements of ions flowing through the soil over time. They are now being 

frequently used in forest ecology research (Hangs et al., 2004; Moukoumi et al., 2012; 

Bilodeau-Gauthier et al., 2013).  

Topsoil volumetric water content (VWC, θv) and temperature over the 2013 growing season 

(May to September) were monitored respectively with soil moisture sensors (Waterscout 

SM100, Spectrum Technologies Inc., Plainfield, IL, USA) and multifunctional probes 

(Waterscout SMEC 300 SM/EC/T, Spectrum Technologies) installed at the three sites. 

Sensors were buried at depths of 10 and 20 cm, and connected to a data logger (WatchDog 

1650 Micro Station, Spectrum Technologies). The instruments were set to record data every 6 

hours. Finally, each plot was characterised by recording topographic and vegetative data such 

as elevation, slope, aspect and tree density. 

Foliar and soil analysis 

Upon arrival in the laboratory, specific leaf area (SLA) was determined following the 

procedures of Pérez-Harguindeguy et al. (2013) for plant functional traits. Leaves were 

weighted and surface area was measured using the WinFOLIATM software (Regent 

Instruments Inc., Quebec City, QC, Canada). Leaf samples were then oven-dried (65 °C for 

72 h), weighed and finely ground using a planetary ball mill (Vibratory Micro Mill 

Pulverisette 0, Fritsch GmbH, Idar-Oberstein, Germany). The pulverised samples were 

analysed for total C and N using high temperature (1040 °C) combustion and infrared 

detection (EA 1108 CHNS-O Analyser, Thermo Fisons, Waltham, MA, USA). For Ca, Mg, 
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K, Mn and P determination, a ground subsample was digested for 4 h at 100 °C in 15N HNO3 

(0.2 g leaf:2 ml HNO3). Base nutrient and Mn levels were determined using atomic 

absorption/emission spectroscopy (model AA-1475, Varian, Palo Alta, CA, USA), whereas P 

levels were determined colorimetrically (molybdenum blue) on a continuous flow analyser 

(Technicon Instruments Corp., Tarrytown, NY, USA). 

Soil samples were air-dried and sieved to pass a 2 mm-mesh to remove coarse fragments. 

Particle size distributions of upper B horizon samples were determined from sub-samples 

using a laser particle analyser (Partica LA-950, Horiba Instruments, Irvine, CA, USA). Giving 

the high organic content of some B horizon samples, they were treated by loss-on-ignition 

before particle size measurement. Soil pH was measured in water (1:5 soil:water) for forest 

floor and B horizon samples. Exchangeable concentrations of Ca2+, Mg2+, K+, Al3+ and P-

PO4
3- of forest floor and B horizon samples were determined using the Mehlich III extraction 

procedure described by Ziadi et al. (2007). Base nutrients and Al levels were determined 

using atomic absorption-emission and P-PO4
3- levels were determined colorimetrically as 

indicated above for foliar analysis. Forest floor and B horizon samples were finely ground for 

total C and N determination using the EA 1108 CHNS-O analyser. 

After they were removed from the soil, the PRS probes were thoroughly cleaned of soil with 

deionised water. Cleaned probes were placed into zipseal bags and refrigerated until analysis. 

Pairs of PRS probes for each plot were eluted for 1 h with 0.5 M HCl to remove adsorbed ions 

from the resin membrane. Both NH4-N and NO3-N were determined colorimetrically by 

continuous flow analysis (Autoanalyser III, Bran & Luebbe, Buffalo, NY). Concentrations of 

Ca2+, Mg2+, K+, P-H2PO4
-, Fe3+, Al3+, Mn2+, Cu2+, Zn2+, SO4

2- and B(OH)4
3+ were determined 

by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES, Optima 3000-DV, 

PerkinElmer Inc., Shelton, CT, USA). 

Statistics 
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Data were analysed using the statistical software package R version 3.0.0 (R Core Team, 

2013). Descriptive statistics were used to characterise each site, and to compare soil and foliar 

nutrients between forest types within site. For the sake of comparison between methods, 

simple Pearson correlation coefficients were also determined between values of respective 

nutrients (Ca, Mg, K and P) or Al as determined by the PRS probes and Mehlich III 

extraction. Due to similar trends observed using the two methods (see Appendix II), the 

discussion is focused on PRS probes data only. 

Principal Component Analysis (PCA) was used to reduce the dimensionality of the data, and 

to visualise variation in soil properties and foliar nutrients between sites and forest types. 

Prior to analysis, data were normalised (centered and scaled) as required for multivariate 

analysis. Ordinations provided a visual assessment of the structure of the data as a whole, i.e., 

whether plots could be grouped by sites or forest types. 

One-way ANOVA was used to test the significance of differences in the dependent variables 

among sites or between forest types. This was followed by means separations using Tukey’s 

HSD (honest significant difference) tests. Assumptions of normality and homoscedasticity of 

residuals were verified prior to analysis, and data were transformed when necessary. 

Variation partitioning was used to quantify individual parts of the explained foliar nutrient 

variation by selected groups of explanatory variables obtained by forward selection. The 

forward selection of explanatory variables was first performed using the forward.sel function 

in the packfor package (Dray et al., 2013) after testing for multi-collinearity within the 

matrices (using calculation of variance inflation factors). Variation partitioning was then 

performed using the varpart function in vegan (Oksanen et al., 2013) and represented 

schematically by Venn diagrams. Significance of each partition was determined by 

permutation testing using partial redundancy analysis (rda function available in the vegan 

package) and ANOVA. 
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Linear mixed-effect models were developed using the lme function in the nlme package 

(Pinheiro et al., 2014) to test the effect of forest types on foliar nutrients, with sites and plots 

being included as random factors. Normality of residuals was tested and transformations were 

performed when necessary. Differences between forest types were determined with Tukey’s 

HSD tests using the glht function in the multcomp package (Hothorn et al., 2008). Predicted 

values and standard errors of the mixed models were computed using the predictSE function 

in the AICcmodavg package (Mazerolle, 2015).  

All coefficients of determination (R²) that were obtained from the aforementioned analyses, 

and which were reported in this study as a means of explaining variation in the data set, are 

adjusted R² values, hereafter denoted as R²a. R²a is the unbiased form of the coefficient that 

takes into account the number of input variables in the model. It is required when performing 

variation partitioning (Peres-Neto et al., 2006). When not provided directly by the analysis or 

function, R²a was calculated with the RsquareAdj function in the vegan package. 

RESULTS 

Site differences in soil properties 

Analysis of soil physical and chemical properties confirmed their clear partitioning by site 

(Fig. 2). Average soil pH (FH-horizon) ranges from 4.2 to 4.7, with St. Hippolyte being the 

most acidic, followed by lac Labelle and Windsor. Mineral soils (upper B horizons) at all sites 

have low clay content (< 5.4 %) with a relatively small range (< 3 %) (Table 2). In contrast, 

silt content varied from 40 % in St. Hippolyte to 60 % in lac Labelle. As a whole, St. 

Hippolyte has coarser textured upper B horizons, with sand content averaging 57 %. Soil 

solution ionic activities that were recorded by PRS probes differ substantially between sites 

(Table 2) and are likely due to variations in soil texture, organic carbon levels and 

mineralogy. Soil solution NO3
- and NH4

+ (hereafter referred to as N), Ca, Mg and Al activities 

are higher in Windsor and St. Hippolyte than in Lac Labelle (Table 2). Despite the small 
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range in clay content, significant negative correlations (r ranging from -0.398 to -0.526, P < 

0.05) were found with soil solution N, Ca, Mg and Al activity (results not shown). Also, clay 

content and mean annual temperature were strongly correlated (r = -0.761, P < 0.001; results 

not shown), suggesting a site effect on nutrient dynamics that is mediated by the confounding 

effects of climate and soil. 

Site differences in foliar nutrients 

Levels of foliar nutrients in maple seedlings vary significantly between sites (Table 3). 

Seedlings in Windsor have higher foliar Ca and Mg levels than the two other sites, while St. 

Hippolyte, in turn, has higher foliar Ca and Mg than Lac Labelle. Similarly, Windsor and St. 

Hippolyte have similar foliar N levels, whereas their levels are higher than Lac Labelle. As a 

whole, foliar nutrients decrease with increasing latitude. Foliar Mn levels are higher in Lac 

Labelle than those at the two other sites, and foliar Mn levels in Windsor are higher than those 

in St. Hippolyte. Foliar Ca/Mn and Mg/Mn ratios decrease with increasing latitude. Specific 

leaf area of maple seedlings vary significantly between sites, with Windsor having the highest 

values, followed by Lac Labelle and St. Hippolyte (Table 3). 

Relationship between foliar nutrients, soil and climate 

A forward selection of significant variables that best explained foliar nutrients of maple 

seedlings was first performed after removing collinearity between variables. The most robust 

model was composed of annual number frost-free days, soil pH, and soil solution P and Mn 

activities, which explained 62.1 % of the variation in foliar nutrients of maple seedlings (P < 

0.001).  

Secondly, variation partitioning was conducted to explain foliar nutrients of maple seedlings 

using variables that were selected by forward selection (see Venn diagram, Fig. 3A). Climate, 

through mean annual frost-free days, explained as much as 40 % of total variation in foliar 

nutrients. This is almost twice the variation that was explained by soil properties (21.7 %), 
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i.e., forest floor pH and soil solution Mn and P activities. The overlap of the variation 

explained by both climate and soil was quite small and negative (R²a = -0.016). A second 

partitioning of the variance was tested using soil properties alone, with climate variables 

being replaced by soil texture (see Venn diagram, Fig. 3B). This model explained 49 % of the 

variation in foliar nutrients. Clay content and soil chemical composition (i.e., pH and solution 

Mn and P activities) explained respectively 23.5 % and 20.7 % of the variation. Because 

strong correlations were found between soil texture and climate variables, a third partitioning 

was performed to explore the link between these variables and foliar nutrients of maple 

seedlings (Fig. 3C). This partitioning of the variance was tested using soil solution ionic 

activities as a first component, clay content as a second, and climate as a third. This model 

explained 61.4 % of total variation in foliar nutrients, and suggests that the variation 

explained by soil texture is encompassed by the variation that is explained by climate. 

Effect of coniferous species within sites on foliar nutrients 

Considering the site effect on soil properties and, in turn, on foliar nutrients of maple 

seedlings, it was necessary to use a mixed-model analysis to isolate the site effect. Sites and 

plots, therefore, were used as hierarchical random variables, with forest type as the fixed 

factor of foliar nutrients. Specific leaf area varies significantly between sites and presents high 

variability between forest types in Windsor and Lac Labelle. In an attempt to consider 

differences in light environment between covers, it was therefore preferred to express foliar 

nutrient levels as unit of leaf area instead of as unit of mass. At the landscape level (i.e., all 

sites), results of the mixed-model analysis show that foliar Ca and Mg levels of maple 

seedlings differed between forest types, with hardwoods and mixed hardwood-conifer stands 

having significantly higher levels than conifer-dominated stands (Fig. 4A). Moreover, foliar 

Ca/Mn and Mg/Mn ratios of maple seedlings under conifer-dominated stands are significantly 

lower than those of seedlings under hardwoods and mixed hardwood-conifer stands (Fig. 4B). 
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At the site scale, only maple seedlings in Lac Labelle have similar foliar nutrient levels 

among forest types (Table 3). In Windsor and St. Hippolyte, maple seedlings under conifer-

dominated stands have significantly lower foliar Ca and Mg levels than under hardwoods. 

Conversely, maple seedlings under conifer-dominated stands in Windsor exhibit significantly 

higher foliar N, K and Mn levels than seedlings under hardwoods. Also in Windsor, foliar P 

levels as well as Ca/Mn and Mg/Mn ratios of maple seedlings under hardwoods are lower 

than seedlings under mixed hardwood-conifer stands (Table 3). 

DISCUSSION 

In this study, we examined foliar nutrient status of maple seedlings at three sites at very 

different latitudes with each site presenting an increasing proportion of coniferous trees. The 

objective was to assess the nutritional acclimation potential of maple seedlings to soil 

conditions prevailing in the boreal forest. Results support our two hypotheses, i.e., both soil 

and climate affect foliar nutrient levels of maple seedlings, and foliar nutrient levels are 

adversely affected by the presence of coniferous tree species.  

Site effect on climate, soil and foliage 

The clear partitioning of soil pH and solution ionic activity between sites (Fig. 2) may be 

more related to soil texture variation than climate, given that the differences were not 

necessarily reflected by a decrease in these variables with increasing latitude (Table 2). The 

soil at the northernmost site (Lac Labelle) differed from the others due to its higher clay 

content (Table 2). The three sites are located in distinct bioclimatic domains, which are 

supposedly characterised by contrasting soil resources. Colder, conifer-dominated forests in 

the north usually generate more acidic soil conditions and lead to lower microbial activity and 

slower organic matter decomposition than warmer deciduous temperate forests in the south of 

the province (Binkley and Fisher, 2012). Thick forest floors that are produced in northern 
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forests should lead, therefore, to significant organic matter buildup and low soil nutrient 

availability, especially N (Binkley and Giardina, 1998).  

Our foliar data suggest that nutrient levels in maple seedlings, viz., N, P, Ca and Mg, 

generally decrease with increasing latitude and decreasing air temperature (Table 3). This 

global pattern of foliar nutrition at our sites suggests that microbial activity, mineralisation of 

organically bound nutrients in the forest floor, soil nutrient availability, and uptake by trees 

are indeed impacted by north-south air and soil temperature gradients of the experimental 

design (Tables 1 and 2). Foliar nutrient levels of maple seedlings indicate that soil nutrient 

availability is normally lower under colder conditions and increasing conifer abundance. The 

higher clay content in Lac Labelle, differences in mineralogy (not measured) between sites, 

and the various forest types that were considered in this analysis are likely masking a similar 

pattern for soil pH and solution ionic activities at the landscape scale.  

Results of variation partitioning suggest that climate and soil variables are both important 

components that affect foliar nutrition of maple seedlings (Fig. 3A). On the one hand, 

explained variation that was shared by both groups of variables is negative and can be 

interpreted as a null relationship or a hierarchical structure of climate over soil variables 

(Legendre and Legendre, 2012). On the other hand, climate variables and soil texture were 

found to be highly correlated, suggesting some confounding effect between site and soil. The 

hierarchical structure of climate over soil pH is rational considering that soil microbial 

activity and nutrient turnover or availability are temperature-dependent (Zak et al., 1999). 

Effects of climate and soil on sugar maple regeneration have been demonstrated in other 

studies (Cleavitt et al., 2011; McCarragher et al., 2011; Graignic et al., 2014). While a 

confounding effect between climate and soil is apparent, the individual effect of climate on 

foliar nutrients of maple seedlings is undoubtedly large in our study (Fig. 3). 
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Levels of foliar nutrients in maple seedlings (Table 3) that were measured in Windsor and St. 

Hippolyte are within the range that has been reported in other studies of maple seedlings 

growing on similar acidic soils (e.g., St. Clair & Lynch, 2005; Park & Yanai, 2009). St. Clair 

and Lynch (2005) examined maple seedlings growing on acidic soils (pH 3.7-4.6), while Park 

and Yanai (2009) studied responses of mature maple trees and seedlings in two sites with 

contrasting pH (4.1 vs 5.4) and soil base cation availability. To our knowledge, however, the 

levels of foliar N, Ca and Mg that were measured in seedlings from the northernmost site, Lac 

Labelle, are below reported literature values for maple seedlings. For example, the mean Ca 

level of maple seedling foliage at this site is 5.05 mg g-1. Considering that Ca values that have 

been reported for unproductive or declining mature maple stands are between 4 and 6 mg g-1 

(Ellsworth and Liu, 1994; Wilmot et al., 1996; Moore and Ouimet, 2006), our results suggest 

that seedlings in Lac Labelle are near or below the threshold for Ca deficiency. In addition, 

foliar Mn levels of maple seedlings at Lac Labelle and of seedlings under conifer-dominated 

stands in Windsor are above the reported Mn range for healthy maple trees, i.e. 0.632 - 1.630 

mg g-1 (Kolb and McCormick, 1993). In Lac Labelle, the high foliar Mn levels are likely the 

consequence of the high Mn activity in the soil solution (Table 2). 

The fact that plots under conifers in Lac Labelle have higher soil pH than similar plots in St. 

Hippolyte as well as higher soil solution Ca activity at the root-soil interface compared to 

similar coniferous plots in Windsor (Table 2) suggests that other mechanisms are controlling 

maple seedling Ca availability and uptake. This could be due to temperature-dependent 

mechanisms that would lower nutrient uptake by roots, given that soil temperature is known 

to affect ion uptake by plants, both directly and indirectly (Pregitzer and King, 2005). For 

example, an increase in soil temperature can lead to an increase in root growth (Pregitzer et 

al., 2000; Rogiers et al., 2014), photosynthetic capacity (Schwarz et al., 1997; Wu et al., 2012; 

Rogiers and Clarke, 2013) and rates of nutrient uptake by fine roots (Dong et al., 2001; 

Page 16 of 42Ecosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Pregitzer and King, 2005). Also, air and soil temperatures have been demonstrated as a major 

factor determining the length of the growing season (Körner and Basler, 2010). Therefore, we 

can consider maple seedlings at the northernmost site generally experience a shorter growing 

season (see air and soil temperatures in Tables 1 and 2), which likely means less effective 

acquisition of nutrients (Nord and Lynch, 2009). For instance, because Ca is taken up in the 

transpiration stream, warmer sites (with more transpiration) should have a greater potential for 

Ca uptake. 

The low foliar N, Ca and Mg levels that were measured in maple seedlings from Lac Labelle 

(Table 3) could suggest that this northern maple provenance has developed a more 

conservative nutritional strategy. At this site, the persistence of a maple population is 

exceptional. The maple population in Lac Labelle is well outside its natural distribution and 

found only in small islets. This site is mostly occupied by coniferous species that have 

presumably conditioned the environment for a very long time towards their own competitive 

advantage (through soil pH and nutrients, water and light availability, allelopathic 

compounds, among other factors). In accordance with the concept of positive feedbacks in 

plant communities, these modifications complicate the establishment of migrating species 

(Wilson and Agnew, 1992). Maple seedlings in Lac Labelle have passed through centuries of 

adaptation to grow and persist in this harsh and cold environment, far beyond its natural 

bioclimatic domain. One manifestation of this adaptive phenotypic plasticity may involve 

lower nutrient levels in foliage (Valladares et al., 2007) relative to the more southern maple 

provenances. 

Effect of coniferous species 

Decreases in foliar Ca levels and Ca/Mn ratios of maple seedlings with an increasing 

proportion of conifers were observed at the landscape level (Fig. 4), suggesting that an 

increase in conifers has a negative effect on nutrient uptake of maple seedlings. Maple is 
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particularly sensitive to low Ca and high Mn availability in comparison to other species 

growing on acidic soils (St. Clair and Lynch, 2005; Long et al., 2009). Positive correlations 

have been found between growth and Ca nutrition of maple seedlings, saplings and trees 

(Kobe et al., 2002; Huggett et al., 2007; Halman et al., 2013; Halman et al., 2014), whereas 

negative correlations have been found between maple tree health and foliar Mn levels (Houle 

et al., 2007; Horsley et al., 2000). Increasing activity of Mn in the soil solution may 

potentially induce foliar Ca (and Mg) deficiencies through strong competitive interactions (St. 

Clair et al., 2008). Calcium can influence primary metabolism and growth indirectly through 

its interaction with other nutrients. Although N and P are the two most important nutrients 

limiting tree growth worldwide (Vitousek, 2004), the health and vitality of maple appears to 

be constrained by Ca availability on acidic soils where foliar values are below deficiency 

thresholds (Drohan et al., 2002; Houle et al., 2007; St. Clair et al., 2008; Long et al., 2009). 

Moreover, higher rates of growth were recorded in studies that surveyed the effect of liming 

on declining maple stands (Liu et al., 1997; Moore and Ouimet, 2006; Schaberg et al., 2006; 

Moore et al., 2014). Most of the declines could be attributed partly to soil acidification by acid 

deposition, resulting in low availability of soil base cations. The negative influence of conifers 

on foliar Mg levels and Mg/Mn ratios (Fig. 4) of maple seedlings is not marginal because Mg 

deficiencies can exert large effects on forest health and decline in acidic soils. For example, 

foliar Mg levels were negatively correlated with health declines of maple stands (Horsley et 

al., 2000). Manganese can impair photosynthetic functions of maple as it competes with Mg 

for activating Rubisco – however, Mn only has a fraction of the activation potential of Mg (St. 

Clair et al., 2008). In acidic soils, the mobility of Mn reaches its optimum below pH 5 (Havlin 

et al., 2005). Conifers tend to decrease soil pH relative to most hardwoods due their more 

acidic litters (Augusto et al., 2000). Hence, our results also imply that the abundance of 
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conifers negatively influences the health of maple seedlings by reducing soil pH and Ca and 

Mg availability (Table 2 and Fig. 4).  

The effect of conifers on foliar nutrition of maple seedlings was not observed individually at 

the northernmost site (Table 3), which may be explained by physiological acclimation and a 

threshold response. Species composition for each forest type in Lac Labelle differs from the 

two southernmost sites. Hardwood stands were rarely found without at least one conifer tree 

in the surrounding stand, whereas finding maple seedlings in the conifer-dominated stands 

was a greater challenge compared to the southernmost sites. The lower seedling density in 

conifer-dominated stands suggests that only the most robust seedlings were able to survive 

and grow, or that seedlings were able to survive and grow because they benefited from more 

suitable microsites. Therefore, the effects of conifers on maple seedling nutrition are 

conservative because the seedlings that were sampled in those plots were presumably among 

the fittest. Moreover, maple seedlings in Lac Labelle exhibited the lowest foliar nutrient levels 

among the three sites (Table 3) as well as with respect to the literature, and it showed higher 

foliar Mn levels than reported values for healthy maple trees. This was the case whether the 

seedlings were growing under hardwoods or conifers. Hence, we propose maple seedlings that 

were found under hardwoods in Lac Labelle were at or near a nutritional threshold that 

jeopardises their survival. 

Foliar N levels of maple seedlings in Windsor increased with increasing proportions of 

coniferous species (Table 3). This result is surprising, given that soil solution N activity tends 

to decrease under conifer-dominated stands. Many of the hardwood stands in Windsor, 

however, had an abundance of ferns in the understorey (62.5 ±7.2 % of ground vegetation 

cover), which is believed to have been favoured by past forestry practices. Ferns are less 

present in the conifer-dominated stands (18.3 ±6.6 % of ground vegetation cover). In fact, 

maple stands in this region of southern Quebec are frequently invaded by ferns, particularly 
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hay-scented fern (Dennstaedtia punctilobula [Michaux] T.Moore), which is a result of canopy 

opening due to natural disturbances and harvesting (Groninger and McCormick, 1992; 

Engelman and Nyland, 2006; Ouimet et al., 2016). We believe that competition for N between 

ferns and maple seedlings explains the lower N levels in maple foliage (Momen et al., 2105). 

Ecological implications 

Results from this study emphasise the importance of climate and interactions with other 

dominant species with respect to the foliar nutrition and regeneration of maple seedlings, a 

field of research that is still poorly studied and elucidated (Cleavitt et al., 2014). Our results 

are consistent with evidence that important factors other than climate must be included to 

improve our abilities to forecast tree species range shifts under climate change (McMahon et 

al., 2011; Brown and Vellend, 2014; Graignic et al., 2014; Zhang et al., 2015). For example, 

Zhang et al. (2015) found that regeneration and growth of red maple at its northern limit in 

Quebec were more strongly controlled by fire return intervals than climate. 

It should be reminded that the measured maple seedlings in this study were those capable of 

growing naturally, even under stressful conditions encountered beneath conifers. The results 

of the study are likely to represent only the best conditions that were experienced by maple 

seedlings growing under coniferous trees. The study especially underscores the negative 

effects of both low soil pH and conifer presence on foliar nutrition of maple seedlings. This 

negative effect could be an important factor limiting northward shifts of maple populations in 

Quebec under climate change. The range of current maple populations in the south, in fact, is 

threatened with ongoing contraction under climate change. Increasing temperatures would not 

provide immediate benefits to maple for several reasons: (1) available moisture and drought 

severity are projected to decrease and increase respectively in the near future (Houle et al., 

2012; Collins et al., 2013; Walsh et al., 2014); (2) freeze-thaw events are likely to increase 

due to reductions in snow depth, which could result in root mechanical injuries (Bertrand et 
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al., 1994; Decker et al., 2003; Comerford et al. 2013); and (3) increased rates of soil 

nitrification due to increased soil temperatures. The last two processes, in turn, would lead to 

soil acidification by exacerbating NO3
-, Mg and Ca leaching (Fitzhugh et al., 2003), followed 

by decreasing foliar N, Ca and Mg levels (Pilon et al., 1994).  

Maple trees in the south are currently enduring competition exclusion by American beech 

(Hane, 2003; Duchesne and Ouimet, 2009). Previous modelling studies that were mostly 

based on climate suggest a high potential for northward migration of maple (Kellman, 2004; 

Goldblum and Rigg, 2005). Therefore, we propose that the local soil conditions maintained by 

coniferous species, i.e. expressed by low Ca and Mg availability, may be one factor among 

many that limit maple seedling establishment and survival. 

Understanding the effect of resident soils (Lafleur et al., 2010) and resident plant species 

(Ettinger and HilleRisLambers, 2013) on migrating plants is critical for predicting plant 

species redistribution under climate change. In the boreal forest, more suitable soil conditions 

are expected in the long-term with climate warming because increased soil temperature will 

release large amounts of nutrients that were immobilised in organic matter, mostly in the 

forest floor. Further, migrating deciduous species with high litter quality will alter the soil 

favourably, at least to some extent. Yet, we can expect that some soil factors will create a 

substantial time lag in maple range expansion. In addition to competitive exclusion of maple 

in the south, the worst-case scenario is that maple distribution in Quebec will suffer range 

contraction in the near future. Thus, further research is needed to elucidate maple acclimation 

to climate change and new resident environments that are characterised by different soil pH, 

moisture, nutrient and light availability, allelopathic compounds and disturbances, among 

others. The presence of predator or pathogen species and the absence of facilitators (e.g., 

mycorrhizae) in the resident environments also have the potential to decrease the colonisation 

success of migrating species (Guisan and Thuiller, 2005). 
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CONCLUSION 

Results from this study indicate that foliar nutrition of sugar maple seedlings is strongly 

influenced by climate, soil conditions and the presence of dominant coniferous trees. First, as 

we hypothesised, soil conditions and nutrient availability influence foliar nutrient levels of 

maple seedlings. This effect can be mediated by combining effects of soil texture and 

latitudinal conditions influencing nutrient cycling and soil nutrient availability. In addition, 

results support our second hypothesis that coniferous species have a negative effect on foliar 

nutrition of maple seedlings through reductions in foliar Ca and Mg, which are recognised as 

important for the health and vigour of maples in eastern North America. This negative effect 

of coniferous species on maple nutrition occurs independently of latitudinal location and soil 

texture. Establishment and persistence of maple seedlings in the boreal forest of Quebec is 

less likely than has been suggested in previous studies. While more suitable boreal soil 

conditions are expected in the long-term due to climate warming, conifer-dominated stands 

might not provide favourable sites for possible northward maple expansion. More globally, 

this paper emphasises the need to consider non-climatic factors (e.g., interactions between 

species and acclimation to soil conditions) in the migratory environment when studying 

population dynamics in the context of climate change and tree species range shift predictions. 
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Fig. 1. Location of study sites with annual degree days above 5 °C 

Fig. 2. Principal component analysis (PCA) of soil pH and soil solution ionic activities as 

measured by PRS probes. The circle of equilibrium contribution is provided. Variables that 

have a longer vector than this radius make a higher contribution than average and can be 

interpreted with confidence. 

Fig. 3. Venn diagrams of foliar nutrients of sugar maple seedlings explained by: (A) soil 

chemistry and climate variables (R²a = 0.637), (B) soil chemistry and soil texture (R²a = 

0.505), and (C) soil chemistry, soil texture and climate variables (R²a = 0.627). Main fractions 

are proportional between each other and significant at P < 0.001. Overlap of main fractions in 

A was negative (R²a = -0.016) and may be explained as a null or hierarchical relationship 

(Legendre & Legendre 2012). 

Fig. 4. Foliar calcium and magnesium in sugar maple seedlings presented in (A) absolute 

concentration values and (B) as ratios with manganese under three forest types (H: hardwood 

stands, Mx: mixed hardwood-conifer stands, C: conifer-dominated stands) as examined by 

mixed model analysis using sites and plot as random factors. Differences between letters are 

Tukey’s HSD at P < 0.05. 
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Table 1. Geographical coordinates, elevations, mean annual degree-days (base 5°C), annual air 

temperatures, annual precipitation, and annual frost-free days of the study sites.  

Site Coordinates 
Elevation Degree days Temperature Precipitation Frost-free 

days (ms) (°D) (°C) (mm) 

Lac Labelle 
N 48°94'514'' 

375 2188 0.5 948 82 
W 79°24'439'' 

St. Hippolyte 
N 45°98'133'' 

360 2845 4.9 1270 153 
W 74°01'538'' 

Windsor 
N 45°60'907'' 

308 2919 5.1 1287 164 
W 71°81'223'' 

 

Note: Climate variables are means that were simulated for the 2000 to 2010 period using BioSIM. 

  

Page 37 of 42 Ecosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

Table 2. Physical and chemical properties of the forest floor and B horizon as a function of study sites 

and forest types (H: hardwood stands, Mx: mixed hardwood-conifer stands, C: conifer-dominated 

stands) within each site 

Site Cover 

FH-horizon 
  

B-horizon 

pH 

  

VWC 

  Temperature   Clay   Silt   Sand   

    
°C 

    
%   %   % 

  

Lac Labelle - 4.39 ± 0.03 14.90 ± 1.42 14.36 ± 0.04   5.41 ± 0.09 60.40 ± 0.95 34.20 ± 1.01 

St. Hippolyte - 4.24 ± 0.03 17.17 ± 0.48 15.97 ± 0.10   2.69 ± 0.17 39.94 ± 1.49 57.37 ± 1.64 

Windsor - 4.72 ± 0.10 11.19 ± 3.38 16.10 ± 0.02   2.90 ± 0.10 56.63 ± 1.49 40.47 ± 1.58 

Lac Labelle 

H 4.55 ± 0.06 -   -     5.74 ± 0.12 60,00 ± 1.51 34.25 ± 1.64 

Mx 4.41 ± 0.05 -   -     5.45 ± 0.15 63.04 ± 0.82 31.50 ± 0.94 

C 4.23 ± 0.06 -   -     5.02 ± 0.17 58.13 ± 2.21 36.83 ± 2.31 

St. Hippolyte 

H 4.40 ± 0.05 -   -     2.75 ± 0.45 46.07 ± 3.74 51.16 ± 4.19 

Mx 4.29 ± 0.06 -   -     2.83 ± 0.16 39.72 ± 0.91 57.44 ± 1.04 

C 4.05 ± 0.03 -   -     2.48 ± 0.21 34.02 ± 1.43 63.49 ± 1.55 

Windsor 

H 5.05 ± 0.17 -   -     2.72 ± 0.16 54.28 ± 2.59 42.99 ± 2.73 

Mx 5.02 ± 0.21 -   -     3.13 ± 0.24 59.84 ± 3.02 37.02 ± 3.23 

C 4.11 ± 0.16 -   -     2.85 ± 0.12 55.75 ± 2.01 41.40 ± 2.12 

 

Note: Soil volumetric water content (VWC) and temperature are means for the June-August period. 

Means are presented with standard errors. 
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Table 2. (continued)  

Site Cover 

Soil solution ionic activities 

N   P   K   Ca   Mg   Mn   Al   Fe   

_________________________________________ µg/10cm/2month _____________________________________________ 

Lac Labelle - 12.5 ± 0.63 3.10 ± 0.83 217 ± 39.3 264 ± 32.1 73.1 ± 8.06 46.5 ± 7.14 18.2 ± 2.63 7.74 ± 1.57 

St. 

Hippolyte 
- 22.6 ± 17.5 2.68 ± 1.10 67.6 ± 11.1 739 ± 87.5 131 ± 11.6 9.55 ± 2.43 55.3 ± 15.4 6.04 ± 1.12 

Windsor - 81.2 ± 17.0 0.31 ± 0.10 31.4 ± 10.2 666 ± 203 162 ± 31.0 28.9 ± 19.1 136 ± 17.9 49.1 ± 12.2 

Lac Labelle 

H 13.3 ± 1.42 5.10 ± 2.10 218 ± 66.9 223 ± 65.5 76.3 ± 15.0 43.0 ± 13.4 24.3 ± 3.43 12.0 ± 2.87 

Mx 12.9 ± 0.76 2.33 ± 0.58 289 ± 91.7 300 ± 56.2 83.3 ± 15.4 60.6 ± 3.60 19.6 ± 5.31 7.65 ± 2.37 

C 11.3 ± 0.98 1.88 ± 0.90 142 ± 22.3 269 ± 54.0 59.8 ± 12.5 35.7 ± 16.1 10.6 ± 1.97 3.57 ± 1.19 

St. 

Hippolyte 

H 59.3 ± 51.8 1.08 ± 0.36 63.8 ± 22.6 964 ± 134 143 ± 12.9 15.2 ± 6.02 96.5 ± 40.9 6.67 ± 2.44 

Mx 4.17 ± 0.88 2.73 ± 1.21 64.8 ± 12.6 535 ± 118 109 ± 26.6 5.35 ± 2.39 33.3 ± 4.19 5.60 ± 1.66 

C 4.34 ± 0.58 4.22 ± 3.17 74.0 ± 25.6 718 ± 147 141 ± 19.2 8.10 ± 2.37 36.0 ± 8.46 5.84 ± 2.22 

Windsor 

H 117 ± 41.2 0.51 ± 0.24 38.5 ± 29.0 993 ± 335 217 ± 74.0 9.84 ± 2.80 165 ± 28.6 22.4 ± 4.69 

Mx 70.2 ± 23.4 0.31 ± 0.17 14.8 ± 6.79 846 ± 460 189 ± 38.8 69.1 ± 56.5 128 ± 45.8 68.8 ± 32.2 

C 55.9 ± 15.4 0.10 ± 0.04 40.9 ± 10.6 159 ± 18.0 79.2 ± 7.63 7.82 ± 2.56 116 ± 12.7 56.1 ± 14.2 
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Table 3. Foliar nutrient levels, ratios of calcium and magnesium to manganese and specific leaf area (SLA) of sugar maple seedlings as a function of study 

sites and forest types (H: hardwood stands, Mx: mixed hardwood-conifer stands, C: conifer-dominated stands) within each site. 

Site Cover 

C   N   P   K   Ca   Mg   Mn   Ca/Mn   Mg/Mn   SLA   

______________________________ 
mg/g 

___________________________________________         
mm2/mg 

Lac Labelle - 469.8 ± 1.01 16.17 ± 0.28  b 1.07 ± 0.05 5.21 ± 0.28  b 5.05 ± 0.23  c 1.33 ± 0.06  c 1.85 ± 0.12  a 3.66 ± 0.37  b 1.01 ± 0.11  b 3.24 ± 0.08  b 

St. Hippolyte - 467.4 ± 1.56 18.15 ± 0.39  a 1.10 ± 0.02 6.28 ± 0.23  a 8.32 ± 0.23  b 1.88 ± 0.08  b 1.02 ± 0.07  c 11.24 ± 1.14  a 2.52 ± 0.26  a 2.26 ± 0.05  c 

Windsor - 471.0 ± 1.0 18.63 ± 0.34  a 1.20 ± 0.05 5.77 ± 0.21  ab 11.27 ± 0.46  a 2.67 ± 0.06  a 1.35 ± 0.11  b 14.64 ± 2.02  a 3.31 ± 0.40  a 4.02 ± 0.24  a 

Lac Labelle 

H 469.8 ± 1.53 15.66 ± 0.53 1.17 ± 0.09 4.74 ± 0.65 4.63 ± 0.36 1.36 ± 0.10 2.01 ± 0.23 3.14 ± 0.48 0.98 ± 0.20 3.15 ± 0.10 

Mx 470.0 ± 1.83 16.05 ± 0.30 1.00 ± 0.10 4.74 ± 0.47 5.20 ± 0.45 1.27 ± 0.10 1.88 ± 0.17 3.41 ± 0.56 0.86 ± 0.17 3.11 ± 0.17 

C 469.6 ± 1.91 16.79 ± 0.52 1.04 ± 0.06 5.51 ± 0.30 5.31 ± 0.31 1.35 ± 0.08 1.68 ± 0.22 4.43 ± 0.81 1.17 ± 0.21 3.46 ± 0.1 

St. Hippolyte 

H 467.9 ± 2.61 18.81 ± 0.60 1.13 ± 0.04 6.28 ± 0.41 9.11 ± 0.34  a 2.14 ± 0.16  a 0.96 ± 0.13 13.27 ± 2.17  a 3.04 ± 0.49  a 2.28 ± 0.09 

Mx 466.9 ± 1.20 17.07 ± 0.56 1.06 ± 0.03 6.02 ± 0.43 8.40 ± 0.38  ab 1.92 ± 0.12  ab 0.99 ± 0.14 12.33 ± 2.42  ab 2.82 ± 0.55  a 2.27 ± 0.07 

C 467.4 ± 3.44 18.57 ± 0.80 1.12 ± 0.03 6.53 ± 0.37 7.44 ± 0.36  b 1.58 ± 0.12  b 1.10 ± 0.10 8.12 ± 0.87  b 1.71 ± 0.22  b 2.22 ± 0.08 

Windsor 

H 475.1 ± 2.02 17.14 ± 0.55  b 0.98 ± 0.10  b 4.83 ± 0.34  b 11.24 ± 0.78  a 2.62 ± 0.14  ab 1.20 ± 0.18  b 13.86 ± 1.99  b 3.32 ± 0.47  b 4.36 ± 0.52 

Mx 468.4 ± 1.83 18.83 ± 0.51  ab 1.47 ± 0.06  a 5.75 ± 0.38  b 12.72 ± 1.02  a 2.84 ± 0.10  a 0.80 ± 0.11  b 25.15 ± 4.80  a 5.32 ± 0.92  a 3.54 ± 0.47 

C 468.8 ± 1.24 20.35 ± 0.69  a 1.13 ± 0.04  ab 7.05 ± 0.37  a 9.38 ± 0.50  b 2.51 ± 0.08  b 2.04 ± 0.12  a 4.89 ± 0.30  c 1.30 ± 0.07  c 4.19 ± 0.13 

 

Note: Means are presented with standard errors. Different letters between sites and forest types (within columns) indicate a statistically significant difference 

at P < 0.05 (permutation paired t-test). 
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APPENDICES 

Appendix I Percentage contribution of each species present within each study site as a 

function of forest type (H: hardwood stands, Mx: mixed hardwood-conifer stands, C: conifer-

dominated stands). 

Species 

  Lac Labelle   St Hippolyte   Windsor 

  H Mx C   H Mx C   H Mx C 

Acer saccharum   32.5 12.5 0 
 

77.75 19.75 0 
 

72.5 50.5 6.75 

Acer rubrum   30 27.5 7.5 
 

0 14.75 10 
 

0 0 1.75 

Betula papyfera   22.5 22.5 12.5 
 

2.25 40 36.5 
 

0 0 0 

Betula alleghaniensis   0 0 0 
 

12 0 0 
 

7.5 17.5 20 

Tilia americana   0 0 0 
 

0 0 0 
 

20 12 0 

Fagus grandifolia   0 0 0 
 

5.75 2.5 1.25 
 

0 3.75 1.75 

Populus grandidentata 0 0 0 
 

0 13.5 0 
 

0 0 0 

Abis balsamea   15 32.5 42.5 
 

2.25 9.5 28.5 
 

0 1.25 8.25 

Pinus strobus   0 0 0 
 

0 0 5.75 
 

0 0 0 

Picea sp   0 0 0 
 

0 0 11.75 
 

0 0 0 

Thuja occidentalis   0 5 37.5 
 

0 0 6.25 
 

0 0 6.75 

Tsuga canadensis   0 0 0 
 

0 0 0 
 

0 15 53.5 

    
           

Hardwoods   85 62.5 20 
 

97.75 90.5 47.75 
 

100 83.75 30.25 

Conifers   15 37.5 80 
 

2.25 9.5 52.25 
 

0 16.25 68.5 
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Appendix II Mehlich III extractable levels of cations and P-PO4
3-

 within each study site as a function of forest type (H: hardwood stands, Mx: 

mixed hardwood-conifer stands, C: conifer-dominated stands). Pearson correlation coefficients between values of respective nutrients (Ca, Mg, K 

and P) or Al as determined by the Mehlich III extraction (forest floor) and PRS probes (just below the forest floor) are presented. 

Site Cover 

FH horizon   B horizon 

P   K   Ca   Mg   Al     P   K   Ca   Mg   Al   

__________________________________________ µg / g __________________________________________ 

Lac Labelle - 242 ± 26 626 ± 53 1668 ± 139 176 ± 12 493 ± 78   5.38 ± 1.89 12.0 ± 2.1 56.2 ± 11.4 9.85 ± 0.55 1810 ± 56 

St. 

Hippolyte 
- 78.2 ± 13.6 461 ± 30 2847 ± 255 200 ± 13 1137 ± 191   0.92 ± 0.19 41.0 ± 3.8 123 ± 25 11.0 ± 1.7 1961 ± 38 

Windsor - 106 ± 17 246 ± 29 1821 ± 549 229 ± 70 1545 ± 226   13.0 ± 6.6 23.4 ± 5.7 485 ± 389 54.4 ± 39.3 1709 ± 149 

Lac Labelle 

H 316 ± 52 687 ± 88 1859 ± 274 200 ± 28 340 ± 30   10.2 ± 5.2 11.6 ± 4.1 79.0 ± 33.4 9.88 ± 0.80 1986 ± 76 

Mx 215 ± 40 637 ± 139 1383 ± 287 158 ± 20 697 ± 201   3.54 ± 0.47 14.8 ± 4.5 46.1 ± 3.5 10.5 ± 0.8 1741 ± 69 

C 196 ± 19 554 ± 41 1761 ± 117 170 ± 9 441 ± 59   2.46 ± 0.38 9.43 ± 2.8 43.6 ± 6.4 9.18 ± 1.35 1704 ± 96 

St. 

Hippolyte 

H 90.4 ± 38.0 423 ± 32 2366 ± 361 181 ± 31 1812 ± 377   1.39 ± 0.50 47.9 ± 6.7 135 ± 33 11.5 ± 1.5 1893 ± 56 

Mx 78.6 ± 18.2 509 ± 64 3255 ± 587 230 ± 12 768 ± 104   0.80 ± 0.11 37.9 ± 6.0 166 ± 62 13.8 ± 4.5 1955 ± 77 

C 65.6 ± 12.6 451 ± 59 2920 ± 330 189 ± 16 831 ± 151   0.58 ± 0.07 37.2 ± 7.4 69.2 ± 16.6 7.68 ± 0.72 2034 ± 59 

Windsor 

H 97.4 ± 30.3 257 ± 12 1482 ± 47 172 ± 18 1856 ± 392   5.20 ± 2.09 36.4 ± 9.9 165 ± 46 23.2 ± 4.9 1656 ± 251 

Mx 155 ± 29 327 ± 65 3086 ± 1568 411 ± 190 1412 ± 539   27.5 ± 19.0 13.8 ± 7.1 1230 ± 1176 128 ± 119 1594 ± 346 

C 65.3 ± 9.8 153 ± 15 897 ± 36 104 ± 7 1368 ± 266   6.18 ± 3.67 19.9 ± 10.7 61.0 ± 17.1 11.7 ± 0.7 1877 ± 215 

Correlation with PRS 

probes 
0.38 * 0.59 *** 0.58 *** 0.36 * 0.87 ***                       

                      

Note: Asterisks mark significance of correlations at the 0.05 (*) or 0.001 (***) level. 
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