106 research outputs found

    Genetics and other factors in the aetiology of female pattern hair loss.

    Get PDF
    Pattern hair loss is the most common form of hair loss in both women and men. Male pattern hair loss, also termed male androgenetic alopecia (M-AGA), is an androgen-dependent trait that is predominantly genetically determined. Androgen-mediated mechanisms are probably involved in FPHL in some women but the evidence is less strong than in M-AGA; and other non-androgenic pathways, including environmental influences, may contribute to the aetiology. Genome-wide association studies (GWASs) have identified several genetic loci for M-AGA and have provided better insight into the underlying biology. However, the role of heritable factors in female pattern hair loss (FPHL) is largely unknown. Recently published studies have been restricted to candidate gene approaches and could not clearly identify any susceptibility locus/gene for FPHL but suggest the aetiology differs substantially from that of M-AGA. Hypotheses about possible pathomechanisms of FPHL as well as the results of the genetic studies performed to date are summarized. This article is protected by copyright. All rights reserved

    Male pattern hair loss: Can developmental origins explain the pattern?

    Get PDF
    Male pattern hair loss (MPHL), also referred to as male androgenetic alopecia (AGA) is the most common type of non-scarring progressive hair loss, with 80% of men suffering from this condition in their lifetime. In MPHL, the hair line recedes to a specific part of the scalp which cannot be accurately predicted. Hair is lost from the front, vertex, and the crown, yet temporal and occipital follicles remain. The visual effect of hair loss is due to hair follicle miniaturisation, where terminal hair follicles become dimensionally smaller. Miniaturisation is also characterised by a shortening of the growth phase of the hair cycle (anagen), and a prolongation of the dormant phase (kenogen). Together, these changes result in the production of thinner and shorter hair fibres, referred to as miniaturised or vellus hairs. It remains unclear why miniaturisation occurs in this specific pattern, with frontal follicles being susceptible while occipital follicles remain in a terminal state. One main factor we believe to be at play, which will be discussed in this viewpoint, is the developmental origin of the skin and hair follicle dermis on different regions of the scalp

    Statistical inaccuracies over use of facial skin care products and sunscreens in the aetiology of frontal fibrosing alopecia: reply from authors.

    Get PDF
    We did not perform a matched one-to-one comparison between FFA subjects and controls, we compared two groups with similar ages. The only continuous variable was age. The responses to the questions posed were categorical. We therefore maintain that a Fisher's exact test rather than a McNemar's test was an appropriate method for analyzing the results

    Epigallocatechin-3 Gallate Inhibits STAT-1/JAK2/IRF-1/HLA-DR/HLA-B and Reduces CD8 MKG2D Lymphocytes of Alopecia Areata Patients.

    Get PDF
    BACKGROUND: Alopecia areata (AA) is associated with Interferon- γ (IFN-γ) mediated T-lymphocyte dysfunction and increased circulating Interleukine-17 (IL-17) levels. Epigallocatechin-3-gallate (EGCG) specifically inhibits IFN-γ pathways and unlike Janus Kinase 1 and 2 (JAK1/JAK2) inhibitors (tofacitinib, ruxolitinib), EGCG is safer, more cost-effective, and is a topically active agent. Our objective is to test the mode of action of EGCG in vitro and ex vivo using HaCat, Jurkat cell lines, and peripheral blood mononuclear cells (PBMCs) of AA patients and healthy controls (HCs), respectively. METHODS: distribution of T helper cells (Th1, Th17), and cytotoxic cells (CD8) in PBMCs isolated from 30 AA patients and 30 HCs was investigated by flowcytomterty. In vitro treatment of HaCat and Jurkat cells with 40 μm EGCG for 48 h was performed to measure the level of phosphorylation of signal transducer and activator of transcription protein STAT1, and replicated in ex vivo model using PBMCs of AA patients. RESULTS: Interestingly, 40 μm EGCG is capable of completely inhibiting phosphorylation of STAT1 after 48 h in HaCat and Jurkat cells and ex vivo in PBMCs of AA patients. Based on QPCR data, the action of EGCG on p-STAT1 seems to be mediated via downregulation of the expression of JAK2 but not JAK1 leading to the inhibition of human leukocyte antigens (HLA-DR and HLA-B) expression probably via IRF-1. On the other hand, AA patients have significantly increased levels of Th1, Th17, and CD8 cells and the production of IFN-γ and IL-17 by PBMCs in AA patients was significantly higher compared to HC; p = 0.008 and p = 0.006, respectively. Total numbers of CD8+ cells were not significantly different between treated and untreated samples. However, CD8+ cells with positive Natural killer group 2 member D (NKG2D) transmembrane receptor (CD8+ NKG2D+ subset) was significantly reduced when PBMCs were treated with 20 μm EGCG for 48 h. CONCLUSION: These results suggest that EGCG has a synergistic action that inhibits expression of HLA-DR and HLA-B molecules via the IFN-γ pathway to maintain immune privilege in HF; also it reduces CD8+ NKG2D+ subset

    Establishing and Prioritising Research Questions for the Treatment of Alopecia Areata: The Alopecia Areata Priority Setting Partnership

    Get PDF
    BACKGROUND: Alopecia areata is a common hair loss disorder that results in patchy to complete hair loss. Many uncertainties exist around the most effective treatments for this condition. OBJECTIVES: To identify uncertainties in alopecia areata management and treatment that are important to both service users (people with hair loss, carers and relatives) and healthcare professionals. METHODS: An alopecia areata priority setting partnership was established between patients, their carers and relatives, and healthcare professionals to identify the most important uncertainties in alopecia areata. The methodology of the James Lind Alliance was followed to ensure a balanced, inclusive and transparent process. RESULTS: In total 2747 treatment uncertainties were submitted by 912 participants, of which 1012 uncertainties relating to alopecia areata (and variants) were analyzed. Questions were combined into "indicative uncertainties" following a structured format. A series of ranking exercises further reduced this list to a top 25 that were taken to a final prioritization workshop where the top 10 priorities were agreed. CONCLUSIONS: We present the top 10 research priorities for alopecia areata to guide researchers and funding bodies to support studies important to both patients and clinicians. This article is protected by copyright. All rights reserved

    Alopecia areata patients show deficiency of FOXP3+CD39+ T regulatory cells and clonotypic restriction of Treg TCRβ-chain, which highlights the immunopathological aspect of the disease

    Get PDF
    Alopecia areata (AA) is a hair loss disorder resulting from an autoimmune reaction against hair follicles. T-helper 1 cells are a major contributor to this disorder, but little is known about the role of T-regulatory cells (Tregs) in AA. Here, we analysed the distribution of circulating Treg subsets in twenty AA patients with active hair loss and fifteen healthy subjects by flow cytometry. The Treg suppressor HLA-DR+ subpopulation was significantly reduced in the patients (P<0.001) and there were significantly fewer cells expressing CD39 among the CD4+CD25+Foxp3+ Treg subpopulation in patients (P = 0.001). FOXP3 CD39 Treg cells were also reduced in hair follicles; by 75% in non-lesional skin and 90% in lesional skin, when compared to control healthy skin. To further characterise Treg cells in AA; Tregs (CD4+CD25+FOXP3+) were investigated for their TCRβ sequence. PCR products analysed by Next Generation Sequencing techniques, showed that all frequent public clonotypes in AA Tregs were also present in controls at relatively similar frequencies, excepting two public clonotypes: CATSRDEGGLDEKLFF (V15 D1 J1-4) and CASRDGTGPSNYGYTF (V2 D1 J1-2), which were exclusively present in controls. This suggests that these Treg clonotypes may have a protective effect and that they may be an exciting subject for future therapeutic applications

    Whole genome sequencing in an acrodermatitis enteropathica family from the Middle East.

    Get PDF
    We report a family from Tabuk, Saudi Arabia, previously screened for Acrodermatitis Enteropathica (AE), in which two siblings presented with typical features of acral dermatitis and a pustular eruption but differing severity. Affected members of our family carry a rare genetic variant, p.Gly512Trp in the SLC39A4 gene which encodes a zinc transporter; disease is thought to result from zinc deficiency. Similar mutations have been reported previously; however, the variable severity within cases carrying the p.Gly512Trp variant and in AE overall led us to hypothesise that additional genetic modifiers may be contributing to the disease phenotype. Therefore whole genome sequencing was carried out in five family members, for whom material was available to search for additional modifiers of AE; this included one individual with clinically diagnosed AE. We confirmed that the p.Gly512Trp change in SLC39A4 was the only candidate homozygous change which was sufficiently rare (ExAC allele frequency 1.178e-05) and predicted deleterious (CADD score 35) to be attributable as a fully penetrant cause of AE. To identify other genes which may carry relevant genetic variation, we reviewed the relevant literature and databases including Gene Ontology Consortium, GeneMANIA, GeneCards, and MalaCards to identify zinc transporter genes and possible interacting partners. The affected individual carried variants in RECQL4 and GPAA1 genes with ExAC allele frequency 10. p.Gly512Trp is highly likely to be the pathogenic variant in this family. This variant was previously detected in a Tunisian proband with perfect genotype-phenotype segregation suggestive of pathogenicity. Further research is required in this area due to small sample size, but attention should be given to RECQL4 and GPAA1 to understand their role in the skin disease

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society
    corecore