133 research outputs found

    Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery

    Get PDF
    Xiang Li1, Nicolas Anton1, Thi Minh Chau Ta1, Minjie Zhao2, Nadia Messaddeq3, Thierry F Vandamme11University of Strasbourg, Faculty of Pharmacy, UMR CNRS 7199 Laboratory of Conception and Application of Bioactive Molecules (Biogalenic Pharmacy team); 2University of Strasbourg, Faculty of Pharmacy, CNRS UMR 7178, IPHC, Laboratory of Analytic Chemistry and Food Science; 3Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR University of Strasbourg/CNRS/INSERM/Collège de France, Illkirch, FranceBackground: Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 µm) which very homogeneously “entrap” the nano-oil droplets (around 150 nm) in their core.Methods: Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder.Results: We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form.Conclusion: This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets.Keywords: nanoemulsions, microparticles, Trojan particle, spray-drying, low-energy emulsification, vitamin E acetat

    In vivo phenotypic and molecular characterization of retinal degeneration in mouse models of three ciliopathies

    Get PDF
    International audienceCilia are highly conserved and ubiquitously expressed organelles. Ciliary defects of genetic origins lead to ci-liopathies, in which retinal degeneration (RD) is one cardinal clinical feature. In order to efficiently find and design new therapeutic strategies the underlying mechanism of retinal degeneration of three murine model was compared. The rodent models correspond to three emblematic ciliopathies, namely: Bardet-Biedl Syndrome (BBS), Alström Syndrome (ALMS) and CEP290-mediated Leber Congenital Amaurosis (LCA). Scotopic rodent electroretinography (ERG) was used to test the retinal function of mice, Transmitted Electron microscopy (T.E.M) was performed to assess retinal structural defects and real-time PCR for targeted genes was used to monitor the expression levels of the major apoptotic Caspase-related pathways in retinal extracts to identify pathological pathways driving the RD in order to identify potential therapeutic targets. We found that BBS and CEP290-mediated LCA mouse models exhibit perinatal retinal degeneration associated with rhodopsin mis-localization in the photoreceptor and the induction of an Endoplasmic Reticulum (ER) stress. On the other hand, the tested ALMS mouse model, displayed a slower degeneration phenotype, with no Rhodopsin mislocalization nor ER-stress activity. Our data points out that behind the general phenotype of vision loss associated with these ciliopathies, the mechanisms and kinetics of disease progression are different

    Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue

    Get PDF
    Previous work indicated that lysine-specific demethylase 1 (Lsd1) can positively regulate the oxidative and thermogenic capacities of white and beige adipocytes. Here we investigate the role of Lsd1 in brown adipose tissue (BAT) and find that BAT- selective Lsd1 ablation induces a shift from oxidative to glycolytic metabolism. This shift is associated with downregulation of BAT-specific and upregulation of white adipose tissue (WAT)-selective gene expression. This results in the accumulation of di- and triacylglycerides and culminates in a profound whitening of BAT in aged Lsd1- deficient mice. Further studies show that Lsd1 maintains BAT properties via a dual role. It activates BAT-selective gene expression in concert with the transcription factor Nrf1 and represses WAT-selective genes through recruitment of the CoREST complex. In conclusion, our data uncover Lsd1 as a key regulator of gene expression and metabolic function in BAT

    The histone code reader Spin1 controls skeletal muscle development

    Get PDF
    While several studies correlated increased expression of the histone code reader Spin1 with tumor formation or growth, little is known about physiological functions of the protein. We generated Spin1(M5) mice with ablation of Spin1 in myoblast precursors using the Myf5-Cre deleter strain. Most Spin1(M5) mice die shortly after birth displaying severe sarcomere disorganization and necrosis. Surviving Spin1(M5) mice are growth-retarded and exhibit the most prominent defects in soleus, tibialis anterior, and diaphragm muscle. Transcriptome analyses of limb muscle at embryonic day (E) 15.5, E16.5, and at three weeks of age provided evidence for aberrant fetal myogenesis and identified deregulated skeletal muscle (SkM) functional networks. Determination of genome-wide chromatin occupancy in primary myoblast revealed direct Spin1 target genes and suggested that deregulated basic helix-loop-helix transcription factor networks account for developmental defects in Spin1(M5) fetuses. Furthermore, correlating histological and transcriptome analyses, we show that aberrant expression of titin-associated proteins, abnormal glycogen metabolism, and neuromuscular junction defects contribute to SkM pathology in Spin1(M5) mice. Together, we describe the first example of a histone code reader controlling SkM development in mice, which hints at Spin1 as a potential player in human SkM disease

    A chimerical phagocytosis model reveals the recruitment by Sertoli cells of autophagy for the degradation of ingested illegitimate substrates

    Get PDF
    Phagocytosis and autophagy are typically dedicated to degradation of substrates of extrinsic and intrinsic origins respectively. Although overlaps between phagocytosis and autophagy were reported, the use of autophagy for ingested substrate degradation by nonprofessional phagocytes has not been described. Blood-separated tissues use their tissue-specific nonprofessional phagocytes for homeostatic phagocytosis. In the testis, Sertoli cells phagocytose spermatid residual bodies produced during germ cell differentiation. In the retina, pigmented epithelium phagocytoses shed photoreceptor tips produced during photoreceptor renewal. Spermatid residual bodies and shed photoreceptor tips are phosphatidylserine-exposing substrates. Activation of the tyrosine kinase receptor MERTK, which is implicated in phagocytosis of phosphatidylserine-exposing substrates, is a common feature of Sertoli and retinal pigmented epithelial cell phagocytosis. The major aim of our study was to investigate to what extent phagocytosis by Sertoli cells may be tissue specific. We analyzed in Sertoli cell cultures that were exposed to either spermatid residual bodies (legitimate substrates) or retina photoreceptor outer segments (illegitimate substrates) the course of the main phagocytosis stages. We show that whereas substrate binding and ingestion stages occur similarly for legitimate or illegitimate substrates, the degradation of illegitimate but not of legitimate substrates triggers autophagy as evidenced by the formation of double-membrane wrapping, MAP1LC3A-II/LC3-II clustering, SQSTM1/p62 degradation, and by marked changes in ATG5, ATG9 and BECN1/Beclin 1 protein expression profiles. The recruitment by nonprofessional phagocytes of autophagy for the degradation of ingested cell-derived substrates is a novel feature that may be of major importance for fundamentals of both apoptotic substrate clearance and tissue homeostasis

    AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis

    Get PDF
    Myotubular myopathy (XLMTM, OMIM 310400) is a severe congenital muscular disease due to mutations in the myotubularin gene (MTM1) and characterized by the presence of small myofibers with frequent occurrence of central nuclei. Myotubularin is a ubiquitously expressed phosphoinositide phosphatase with a muscle-specific role in man and mouse that is poorly understood. No specific treatment exists to date for patients with myotubular myopathy. We have constructed an adeno-associated virus (AAV) vector expressing myotubularin in order to test its therapeutic potential in a XLMTM mouse model. We show that a single intramuscular injection of this vector in symptomatic Mtm1-deficient mice ameliorates the pathological phenotype in the targeted muscle. Myotubularin replacement in mice largely corrects nuclei and mitochondria positioning in myofibers and leads to a strong increase in muscle volume and recovery of the contractile force. In addition, we used this AAV vector to overexpress myotubularin in wild-type skeletal muscle and get insight into its localization and function. We show that a substantial proportion of myotubularin associates with the sarcolemma and I band, including triads. Myotubularin overexpression in muscle induces the accumulation of packed membrane saccules and presence of vacuoles that contain markers of sarcolemma and T-tubules, suggesting that myotubularin is involved in plasma membrane homeostasis of myofibers. This study provides a proof-of-principle that local delivery of an AAV vector expressing myotubularin can improve the motor capacities of XLMTM muscle and represents a novel approach to study myotubularin function in skeletal muscle

    The First Cellular Models Based on Frataxin Missense Mutations That Reproduce Spontaneously the Defects Associated with Friedreich Ataxia

    Get PDF
    BACKGROUND:Friedreich ataxia (FRDA), the most common form of recessive ataxia, is due to reduced levels of frataxin, a highly conserved mitochondrial iron-chaperone involved in iron-sulfur cluster (ISC) biogenesis. Most patients are homozygous for a (GAA)(n) expansion within the first intron of the frataxin gene. A few patients, either with typical or atypical clinical presentation, are compound heterozygous for the GAA expansion and a micromutation. METHODOLOGY:We have developed a new strategy to generate murine cellular models for FRDA: cell lines carrying a frataxin conditional allele were used in combination with an EGFP-Cre recombinase to create murine cellular models depleted for endogenous frataxin and expressing missense-mutated human frataxin. We showed that complete absence of murine frataxin in fibroblasts inhibits cell division and leads to cell death. This lethal phenotype was rescued through transgenic expression of human wild type as well as mutant (hFXN(G130V) and hFXN(I154F)) frataxin. Interestingly, cells expressing the mutated frataxin presented a FRDA-like biochemical phenotype. Though both mutations affected mitochondrial ISC enzymes activities and mitochondria ultrastructure, the hFXN(I154F) mutant presented a more severe phenotype with affected cytosolic and nuclear ISC enzyme activities, mitochondrial iron accumulation and an increased sensitivity to oxidative stress. The differential phenotype correlates with disease severity observed in FRDA patients. CONCLUSIONS:These new cellular models, which are the first to spontaneously reproduce all the biochemical phenotypes associated with FRDA, are important tools to gain new insights into the in vivo consequences of pathological missense mutations as well as for large-scale pharmacological screening aimed at compensating frataxin deficiency

    An integrated diagnosis strategy for congenital myopathies

    Get PDF
    Congenital myopathies are severe muscle disorders affecting adults as well as children in all populations. The diagnosis of congenital myopathies is constrained by strong clinical and genetic heterogeneity. Moreover, the majority of patients present with unspecific histological features, precluding purposive molecular diagnosis and demonstrating the need for an alternative and more efficient diagnostic approach. We used exome sequencing complemented by histological and ultrastructural analysis of muscle biopsies to identify the causative mutations in eight patients with clinically different skeletal muscle pathologies, ranging from a fatal neonatal myopathy to a mild and slowly progressive myopathy with adult onset. We identified RYR1 (ryanodine receptor) mutations in six patients and NEB (nebulin) mutations in two patients. We found novel missense and nonsense mutations, unraveled small insertions/deletions and confirmed their impact on splicing and mRNA/protein stability. Histological and ultrastructural findings of the muscle biopsies of the patients validated the exome sequencing results. We provide the evidence that an integrated strategy combining exome sequencing with clinical and histopathological investigations overcomes the limitations of the individual approaches to allow a fast and efficient diagnosis, accelerating the patient's access to a better healthcare and disease management. This is of particular interest for the diagnosis of congenital myopathies, which involve very large genes like RYR1 and NEB as well as genetic and phenotypic heterogeneity

    Essential role of alpha 6 integrins in cortical and retinal lamination

    Get PDF
    International audienceExtracellular matrix (ECM) is believed to play important roles in many aspects of nervous system development [1]. The laminins are ECM glycoproteins expressed in neural tissues and are potent stimulators of neurite outgrowth in vitro [1-3]. Genetic approaches using Drosophila and Caenorhabditis elegans have demonstrated a role for laminin and a laminin receptor in vivo in axon pathfinding and fasciculation, respectively [4,5]. In higher organisms, however, the role of laminins in the development of the nervous system is poorly understood. Integrins alpha 6 beta 1 and alpha 6 beta 4 are major laminin receptors. A role for the alpha 6 integrin in neurulation has been reported in amphibians [6]. We previously described mice lacking integrin alpha 6; these mice died at birth with severe skin blistering [7]. Detailed analyses of integrin alpha 6-/- mice reported here revealed abnormalities in the laminar organization of the developing cerebral cortex and retina. Ectopic neuroblastic outgrowths were found on the brain surface and in the vitreous body in the eye. Alterations of laminin deposition were found in mutant brains. Thus, this study provides evidence for an essential role of integrin-laminin interactions in the proper development of the nervous system. These observations are particularly significant given the recent report that human patients suffering from epidermolysis bullosa can carry mutations in ITGA6, the gene encoding the alpha 6 integrin chain [8,9]
    corecore