71 research outputs found

    The Junction-associated Protein AF-6 Interacts and Clusters with Specific Eph Receptor Tyrosine Kinases at Specialized Sites of Cell–Cell Contact in the Brain

    Get PDF
    The AF-6/afadin protein, which contains a single PDZ domain, forms a peripheral component of cell membranes at specialized sites of cell–cell junctions. To identify potential receptor-binding targets of AF-6 we screened the PDZ domain of AF-6 against a range of COOH-terminal peptides selected from receptors having potential PDZ domain-binding termini. The PDZ domain of AF-6 interacts with a subset of members of the Eph subfamily of RTKs via its COOH terminus both in vitro and in vivo. Cotransfection of a green fluorescent protein-tagged AF-6 fusion protein with full-length Eph receptors into heterologous cells induces a clustering of the Eph receptors and AF-6 at sites of cell–cell contact. Immunohistochemical analysis in the adult rat brain reveals coclustering of AF-6 with Eph receptors at postsynaptic membrane sites of excitatory synapses in the hippocampus. Furthermore, AF-6 is a substrate for a subgroup of Eph receptors and phosphorylation of AF-6 is dependent on a functional kinase domain of the receptor. The physical interaction of endogenous AF-6 with Eph receptors is demonstrated by coimmunoprecipitation from whole rat brain lysates. AF-6 is a candidate for mediating the clustering of Eph receptors at postsynaptic specializations in the adult rat brain

    Integrated Flow Chamber System for Live Cell Microscopy

    Get PDF
    In vitro quantification of the effect of mechanical loads on cells by live microscopy requires precise control of load and culture environment. Corresponding systems are often bulky, their setup and maintenance are time consuming, or the cell yield is low. Here, we show the design and initial testing of a new cell culture system that fits on standard light microscope stages. Based on the parallel plate principle, the system allows for live microscopy of cells exposed to flow-induced shear stress, features short setup time and requires little user interaction. An integrated feedback-controlled heater and a bubble trap enable long observation times. The key design feature is the possibility for quick exchange of the cultured cells. We present first test results that focus on verifying the robustness, biocompatibility, and ease of use of the device

    Cognitive impairment in Gdi1-deficient mice is associated with altered synaptic vesicle pools and short-term synaptic plasticity, and can be corrected by appropriate learning training

    Get PDF
    The GDI1 gene, responsible in human for X-linked non-specific mental retardation, encodes αGDI, a regulatory protein common to all GTPases of the Rab family. Its alteration, leading to membrane accumulation of different Rab GTPases, may affect multiple steps in neuronal intracellular traffic. Using electron microscopy and electrophysiology, we now report that lack of αGDI impairs several steps in synaptic vesicle (SV) biogenesis and recycling in the hippocampus. Alteration of the SV reserve pool (RP) and a 50% reduction in the total number of SV in adult synapses may be dependent on a defective endosomal-dependent recycling and may lead to the observed alterations in short-term plasticity. As predicted by the synaptic characteristics of the mutant mice, the short-term memory deficit, observed when using fear-conditioning protocols with short intervals between trials, disappeared when the Gdi1 mutants were allowed to have longer intervals between sessions. Likewise, previously observed deficits in radial maze learning could be corrected by providing less challenging pre-training. This implies that an intact RP of SVs is necessary for memory processing under challenging conditions in mice. The possibility to correct the learning deficit in mice may have clinical implication for future studies in huma

    Alteration of inhibitory circuits in the somatosensory cortex of Ts65Dn mice, a model for Down's syndrome

    Get PDF
    Down's syndrome (DS), with an incidence of one in 800 live births, is the most common genetic disorder associated with mental retardation. This trisomy on chromosome 21 induces a variable phenotype in which the only common feature is the presence of mental retardation. The neural mechanisms underlying mental retardation might include defects in the formation of neuronal networks and neural plasticity. DS patients have alterations in the morphology, the density and the distribution of dendritic spines in the pyramidal neurons of the cortex. Our hypothesis is that the deficits in dendritic arborization observed in the principal neurons of DS patients and Ts65Dn mice (a model for DS that mimics most of the structural alterations observed in humans) may be mediated to some extent by changes in their inhibitory inputs. Different types of interneurons control different types of inhibition. Therefore, to understand well the changes in inhibition in DS, it is necessary to study the different types of interneurons separately. We have studied the expression of synaptophysin, Glutamic acid decarboxylase-67 (GAD-67) and calcium-binding protein-expressing cells in the primary somatosensory cortex of 4¿5 month old Ts65Dn mice. We have observed an increment of GAD67 immunoreactivity that is related mainly to an increment of calretinin-immunoreactive cells and among them the ones with bipolar morphology. Since there is a propensity for epilepsy in DS patients, this increase in interneurons might reflect an attempt by the system to block overexcitation rather than an increment in total inhibition and could explain the deficit in interneurons and principal cells observed in elderly DS patients

    Molecular and Electrophysiological Characterization of GFP-Expressing CA1 Interneurons in GAD65-GFP Mice

    Get PDF
    The use of transgenic mice in which subtypes of neurons are labeled with a fluorescent protein has greatly facilitated modern neuroscience research. GAD65-GFP mice, which have GABAergic interneurons labeled with GFP, are widely used in many research laboratories, although the properties of the labeled cells have not been studied in detail. Here we investigate these cells in the hippocampal area CA1 and show that they constitute ∼20% of interneurons in this area. The majority of them expresses either reelin (70±2%) or vasoactive intestinal peptide (VIP; 15±2%), while expression of parvalbumin and somatostatin is virtually absent. This strongly suggests they originate from the caudal, and not the medial, ganglionic eminence. GFP-labeled interneurons can be subdivided according to the (partially overlapping) expression of neuropeptide Y (42±3%), cholecystokinin (25±3%), calbindin (20±2%) or calretinin (20±2%). Most of these subtypes (with the exception of calretinin-expressing interneurons) target the dendrites of CA1 pyramidal cells. GFP-labeled interneurons mostly show delayed onset of firing around threshold, and regular firing with moderate frequency adaptation at more depolarized potentials

    Age-Dependent Neurogenesis and Neuron Numbers within the Olfactory Bulb and Hippocampus of Homing Pigeons

    Get PDF
    Many birds are supreme long-distance navigators that develop their navigational ability in the first months after fledgling but update the memorized environmental information needed for navigation also later in life. We studied the extent of juvenile and adult neurogenesis that could provide such age-related plasticity in brain regions known to mediate different mechanisms of pigeon homing: the olfactory bulb (OB), and the triangular area of the hippocampal formation (HP tr). Newly generated neurons (visualized by doublecortin, DCX) and mature neurons were counted stereologically in 35 pigeon brains ranging from 1 to 168 months of age. At the age of 1 month, both areas showed maximal proportions of DCX positive neurons, which rapidly declined during the first year of life. In the OB, the number of DCX-positive periglomerular neurons declined further over time, but the number of mature periglomerular cells appeared unchanged. In the hippocampus, the proportion of DCX-positive neurons showed a similar decline yet to a lesser extent. Remarkably, in the triangular area of the hippocampus, the oldest birds showed nearly twice the number of neurons as compared to young adult pigeons, suggesting that adult born neurons in these regions expanded the local circuitry even in aged birds. This increase might reflect navigational experience and, possibly, expanded spatial memory. On the other hand, the decrease of juvenile neurons in the aging OB without adding new circuitry might be related to the improved attachment to the loft characterizing adult and old pigeons
    • …
    corecore