128 research outputs found

    Clinical and pathology characterization of small nerve fiber neuro(no)pathy in cerebellar ataxia with neuropathy and vestibular areflexia syndrome

    Get PDF
    Background and purpose: Biallelic mutation/expansion of the gene RFC1 has been described in association with a spectrum of manifestations ranging from isolated sensory neuro(no)pathy to a complex presentation as cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS). Our aim was to define the frequency and characteristics of small fiber neuropathy (SFN) in RFC1 disease at different stages. Methods: RFC1 cases were screened for SFN using the Neuropathic Pain Symptom Inventory and Composite Autonomic Symptom Score 31 questionnaires. Clinical data were retrospectively collected. If available, lower limb skin biopsy samples were evaluated for somatic epidermal and autonomic subepidermal structure innervation and compared to healthy controls (HCs). Results: Forty patients, median age at onset 54 years (interquartile range [IQR] 49–61) and disease duration 10 years (IQR 6–16), were enrolled. Mild-to-moderate positive symptoms (median Neuropathic Pain Symptom Inventory score 12.1/50, IQR 5.5–22.3) and relevant autonomic disturbances (median Composite Autonomic Symptom Score 31 37.0/100, IQR 17.7–44.3) were frequently reported and showed scarce correlation with disease duration. A non-length-dependent impairment in nociception was evident in both clinical and paraclinical investigations. An extreme somatic denervation was observed in all patients at both proximal (fibers/mm, RFC1 cases 0.0 vs. HCs 20.5, p < 0.0001) and distal sites (fibers/mm, RFC1 cases 0.0 vs. HCs 13.1, p < 0.0001); instead only a slight decrease was observed in cholinergic and adrenergic innervation of autonomic structures. Conclusions: RFC1 disease is characterized by a severe and widespread somatic SFN. Skin denervation may potentially represent the earliest feature and drive towards the suspicion of this disorder

    Growth performance of the black soldier fly (Hermetia illucens) on by-products from brewing production

    Get PDF
    Hermetia illucens (Diptera: Stratiomyidae), also known as the black soldier fly, is considered an interesting candidate as alternative source of protein for livestock. Larvae of this species are able to efficiently bio-convert organic waste material into insect biomass. In addition, larvae can consume twice of their weight per day of waste, accumulating high amounts of protein and fat. The choice of the correct rearing substrate is essential in order to contribute to the disposal of waste or by-products obtained from the various stages of the industrial food production, that could hardly find other utilization, and to maximize the production of black soldier fly prepupae. Moreover, it is important to identify a lowcost diet with no competition with animal or human consumption. Among numerous by-products of vegetal origin, in this study black soldier fly larvae were reared on the following substrates originating from the brewing production: brewer\u2019s spent grain, trub, and a mix of the two by-products (50 and 50%). The influence of the rearing substrates of the different life-history traits was observed. In particular, we considered the survivorship of the different developmental stages, the larval final weight, the duration of the larval period and the emergence of adults. Larvae could complete their development on the three substrates tested. Nevertheless, some differences were observed on the different parameters. In particular, the mixture of the two by-products resulted in a faster growth of the larvae that took less days to reach prepupal stage than the ones grown on the single by-product. The same trend was noticed on the final larval weight. The mortality of the larvae was significantly higher on those grown on brewer\u2019s spent grain, while no differences were noticed among the other substrates. This study showed the possibility to rear the black soldier fly on different byproducts coming from the brewing production industry, that can therefore represent an interesting rearing substrate for the insect. More research is needed to optimize the diet for a possible use in mass rearing system

    Amnion epithelial cell derived exosomes induce inflammatory changes in uterine cells

    Get PDF
    Fetal endocrine signals are generally considered to contribute to the timing of birth and the initiation of labor. Fetal tissues under oxidative stress release inflammatory mediators that lead to sterile inflammation within the maternal-fetal interface. Importantly, these inflammatory mediators are packaged into exosomes, bioactive cell-derived extra cellular vesicles that function as vectors and transport them from the fetal side to the uterine tissues where they deposit their cargo into target cells enhancing uterine inflammatory load. This exosome-mediated signaling is a novel mechanism for fetal-maternal communication.This report tested the hypothesis that oxidative stress can induce fetal amnion cells to produce exosomes, which function as a paracrine intermediary between the fetus and mother and biochemically signal readiness for parturition.Primary amnion epithelial cells (AEC) were grown in normal cell culture (control) or exposed to oxidative stress conditions (induced by cigarette smoke extract). Exosomes were isolated from cell supernatant by sequential ultracentrifugation. Exosomes were quantified and characterized based on size, shape, and biochemical markers. Myometrial, decidual and placental cells (BeWo) were treated with 2x10, 2x10 and 2x10 control or oxidative stress derived AEC exosomes for 24 hours. Entry of AEC exosomes into cells was confirmed by confocal microscopy of fluorescent-labelled exosomes. The effect of AEC exosomes on target cell inflammatory status was determined by measuring production of IL-6, IL-8, IL-1β, TNF-α and PGE by ELISA and inflammatory gene transcription factor (NF-κβ) activation status by immunoblotting for phosphorylated RelA/p65. Localization of NANOG in term human myometrium and decidua obtained from women before labor and during labor was performed using immunohistochemistry. Data were analyzed by Wilcoxon-Mann-Whitney test to compare effects of exosomes from control and oxidative stress -treated AEC cells on inflammatory status of target cells.AECs released ∼125 nm, cup shaped exosomes with ∼ 899 and 1211 exosomes released per cell from control and oxidative stress induced cells respectively. AEC exosomes were detected in each target cell type after treatment using confocal microscopy. Treatment with AEC exosomes increased secretion of IL-6, IL-8 and PGE and activation of NF-κβ (each

    Lack of Renal 11 Beta-Hydroxysteroid Dehydrogenase Type 2 at Birth, a Targeted Temporal Window for Neonatal Glucocorticoid Action in Human and Mice

    Get PDF
    International audienceBackground Glucocorticoid hormones play a major role in fetal organ maturation. Yet, excessive glucocorticoid exposure in utero can result in a variety of detrimental effects, such as growth retardation and increased susceptibility to the development of hypertension. To protect the fetus, maternal glucocorticoids are metabolized into inactive compounds by placental 11beta-hydroxysteroid dehydrogenase type2 (11βHSD2). This enzyme is also expressed in the kidney, where it prevents illicit occupation of the mineralocorticoid receptor by glucocorticoids. We investigated the role of renal 11βHSD2 in the control of neonatal glucocorticoid metabolism in the human and mouse. Methods Cortisol (F) and cortisone (E) concentrations were measured in maternal plasma, umbilical cord blood and human newborn urine using HPLC. 11βHSD2 activity was indirectly assessed by comparing the F/E ratio between maternal and neonatal plasma (placental activity) and between plasma and urine in newborns (renal activity). Direct measurement of renal 11βHSD2 activity was subsequently evaluated in mice at various developmental stages. Renal 11βHSD2 mRNA and protein expression were analyzed by quantitative RT-PCR and immunohistochemistry during the perinatal period in both species. Results We demonstrate that, at variance with placental 11βHSD2 activity, renal 11βHSD2 activity is weak in newborn human and mouse and correlates with low renal mRNA levels and absence of detectable 11βHSD2 protein. Conclusions We provide evidence for a weak or absent expression of neonatal renal 11βHSD2 that is conserved among species. This temporal and tissue-specific 11βHSD2 expression could represent a physiological window for glucocorticoid action yet may constitute an important predictive factor for adverse outcomes of glucocorticoid excess through fetal programming

    Prognostic significance of IL-6 and IL-8 ascites levels in ovarian cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The acellular fraction of epithelial ovarian cancer (EOC) ascites promotes <it>de novo </it>resistance of tumor cells and thus supports the idea that tumor cells may survive in the surrounding protective microenvironment contributing to disease recurrence. Levels of the pro-inflammatory cytokines IL-6 and IL-8 are elevated in EOC ascites suggesting that they could play a role in tumor progression.</p> <p>Methods</p> <p>We measured IL-6 and IL-8 levels in the ascites of 39 patients with newly diagnosed EOC. Commercially available enzyme-linked immunosorbent assay (ELISA) was used to determine IL-6 and IL-8 ascites levels. Ascites cytokine levels were correlated with clinicopathological parameters and progression-free survival.</p> <p>Results</p> <p>Mean ascites levels for IL-6 and IL-8 were 6419 pg/ml (SEM: 1409 pg/ml) and 1408 pg/ml (SEM: 437 pg/ml) respectively. The levels of IL-6 and IL-8 in ascites were significantly lower in patients that have received prior chemotherapy before the surgery (Mann-Whitney U test, <it>P </it>= 0.037 for IL-6 and <it>P </it>= 0.008 for IL-8). Univariate analysis revealed that high IL-6 ascites levels (<it>P </it>= 0.021), serum CA125 levels (<it>P </it>= 0.04) and stage IV (<it>P </it>= 0.009) were significantly correlated with shorter progression-free survival. Including these variables in a multivariate analysis revealed that elevated IL-6 levels (<it>P </it>= 0.033) was an independent predictor of shorter progression-free survival.</p> <p>Conclusion</p> <p>Elevated IL-6, but not IL-8, ascites level is an independent predictor of shorter progression-free survival.</p

    Effect of prenatal glucocorticoid treatment on size at birth among infants born at term gestation

    Get PDF
    ObjectiveTo determine whether prenatal treatment with a single course of glucocorticoids (GCs) affects size at birth among full-term infants independent of fetal size before GC administration or exposure to preterm labor (PTL).Study designIn all, 105 full-term infants were recruited into three study groups (30 GC treated; 60 controls matched for gestational age (GA) at birth and sex; and 15 PTL controls without GC exposure). Size of the infants was estimated before treatment using two-dimensional (2D) ultrasound and by direct measurement at birth.ResultsLength, weight and head circumference at birth were smaller among GC-treated infants compared with matched controls (P's&lt;0.01), although fetal size did not differ before treatment (P's&gt;0.2). Exposure to PTL did not account for this effect.ConclusionsPrenatal treatment with a single course of GCs was associated with a reduction in size at birth among infants born at term gestation. This effect cannot be explained by differences in fetal size before treatment or exposure to PTL

    100th anniversary of the discovery of the human adrenal fetal zone by Stella Starkel and Lesław Węgrzynowski: how far have we come?

    Full text link

    Anti-MUC1 Monoclonal Antibody (C595) and Docetaxel Markedly Reduce Tumor Burden and Ascites, and Prolong Survival in an in vivo Ovarian Cancer Model

    Get PDF
    MUC1 is associated with cellular transformation and tumorigenicity and is considered as an important tumor-associated antigen (TAA) for cancer therapy. We previously reported that anti-MUC1 monoclonal antibody C595 (MAb C595) plus docetaxel (DTX) increased efficacy of DTX alone and caused cultured human epithelial ovarian cancer (EOC) cells to undergo apoptosis. To further study the mechanisms of this combination-mediated apoptosis, we investigated the effectiveness of this combination therapy in vivo in an intraperitoneal (i.p.) EOC mouse model. OVCAR-3 cells were implanted intraperitoneally in female athymic nude mice and allowed to grow tumor and ascites. Mice were then treated with single MAb C595, DTX, combination test (MAb C595 and DTX), combination control (negative MAb IgG3 and DTX) or vehicle control i.p for 3 weeks. Treated mice were killed 4 weeks post-treatment. Ascites volume, tumor weight, CA125 levels from ascites and survival of animals were assessed. The expression of MUC1, CD31, Ki-67, TUNEL and apoptotic proteins in tumor xenografts was evaluated by immunohistochemistry. MAb C595 alone inhibited i.p. tumor growth and ascites production in a dose-dependent manner but did not obviously prevent tumor development. However, combination test significantly reduced ascites volume, tumor growth and metastases, CA125 levels in ascites and improved survival of treated mice compared with single agent-treated mice, combination control or vehicle control-treated mice (P<0.05). The data was in a good agreement with that from cultured cells in vitro. The mechanisms behind the observed effects could be through targeting MUC1 antigens, inhibition of tumor angiogenesis, and induction of apoptosis. Our results suggest that this combination approach can effectively reduce tumor burden and ascites, prolong survival of animals through induction of tumor apoptosis and necrosis, and may provide a potential therapy for advanced metastatic EOC

    Loss of Cannabinoid Receptor CB1 Induces Preterm Birth

    Get PDF
    Preterm birth accounting approximate 10% of pregnancies in women is a tremendous social, clinical and economic burden. However, its underlying causes remain largely unknown. Emerging evidence suggests that endocannabinoid signaling via cannabinoid receptor CB1 play critical roles in multiple early pregnancy events in both animals and humans. Since our previous studies demonstrated that loss of CB1 defers the normal implantation window in mice, we surmised that CB1 deficiency would influence parturition events.Exploiting mouse models with targeted deletion of Cnr1, Cnr2 and Ptgs1 encoding CB1, CB2 and cyclooxygenase-1, respectively, we examined consequences of CB1 or CB2 silencing on the onset of parturition. We observed that genetic or pharmacological inactivation of CB1, but not CB2, induced preterm labor in mice. Radioimmunoassay analysis of circulating levels of ovarian steroid hormones revealed that premature birth resulting from CB1 inactivation is correlated with altered progesterone/estrogen ratios prior to parturition. More strikingly, the phenotypic defects of prolonged pregnancy length and parturition failure in mice missing Ptgs1 were corrected by introducing CB1 deficiency into Ptgs1 null mice. In addition, loss of CB1 resulted in aberrant secretions of corticotrophin-releasing hormone and corticosterone during late gestation. The pathophysiological significance of this altered corticotrophin-releasing hormone-driven endocrine activity in the absence of CB1 was evident from our subsequent findings that a selective corticotrophin-releasing hormone antagonist was able to restore the normal parturition timing in Cnr1 deficient mice. In contrast, wild-type females receiving excessive levels of corticosterone induced preterm birth.CB1 deficiency altering normal progesterone and estrogen levels induces preterm birth in mice. This defect is independent of prostaglandins produced by cyclooxygenase-1. Moreover, CB1 inactivation resulted in aberrant corticotrophin-releasing hormone and corticosterone activities prior to parturition, suggesting that CB1 regulates labor by interacting with the corticotrophin-releasing hormone-driven endocrine axis
    corecore