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CONDENSATION AND SHORT TITLE: 46 

Condensation: Amnion epithelial cells produce exosomes which function in a paracrine fashion 47 

to exert pro-inflammatory effects on myometrial and decidual cells and may be an important 48 

component of parturition. 49 

Short title:  Exosomes: paracrine mediators of parturition 50 

Implications and Contributions: 51 

A. This study was conducted to investigate what role amnion epithelial cell derived exosomes 52 

may play in human parturition. 53 

B. Amnion epithelial cell derived exosomes, generated under control and oxidative stress 54 

conditions, are taken up by myometrial, decidual and placental (BeWo) cells.  The exosomes 55 

from both conditions significantly increased inflammatory cytokine load and activated NF-kB in 56 

maternal cells. 57 

C. What this study adds to our knowledge: This study indicates that fetal derived exosomes may 58 

be an important contributor to the pathogenesis of human parturition.  59 
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Abbreviations used in this manuscript 60 

AEC- Amnion epithelial cells 61 

CD – Cluster differentiation  62 

cffTF  - Cell free fetal telomere fragments  63 

CFSE - Carboxyfluorescein succinimidyl ester  64 

CSE- Cigarette smoke extract 65 

DAPI  - 4’,6-diamidino-2-phenylindole   66 

DAMPs - Damage associated molecular pattern markers 67 

DNA – Deoxy ribonucleic acid 68 

ELISA - Enzyme Linked Immunosorbent Assay  69 

EMT - Epithelial mesenchymal transition 70 

EtOH –Ethyl alcohol 71 

FBS – Fetal bovine serum 72 

FFPE - Formalin-fixed paraffin-embedded  73 

HMGB  - High mobility group box  74 

HI  - Heat Inactivated 75 

HBSS - Hanks Balanced Salt Solution  76 

IL - Interleukin 77 

LC/MS-MS – Liquid chromatography/mass spectrometry 78 

LPS - Lipopolysaccharide 79 

MAPK  - Mitogen activated protein kinase 80 

NANOG – Transcription factor of self-renewing embryonic stem cells 81 

NF-κB – Nuclear factor kappa B 82 

OS- Oxidative stress 83 

PBS – Phosphate buffered saline 84 

PFA –Paraformaldehyde 85 

PGE – Prostaglandin E 86 

RelA - RELA Proto-Oncogene, NF-κB Subunit 87 
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RNA – Ribonucleic acid 88 

SASP - Senescence associated secretory phenotype  89 

TEM  - Transmission electron microscope 90 

TGFβ – Transforming growth factor beta 91 

TNF-α – Tumor necrosis factor alpha 92 
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ABSTRACT 116 

Background: Fetal endocrine signals are generally considered to contribute to the timing of 117 

birth and the initiation of labor. Fetal tissues under oxidative stress release inflammatory 118 

mediators that lead to sterile inflammation within the maternal-fetal interface. Importantly, these 119 

inflammatory mediators are packaged into exosomes, bioactive cell-derived extra cellular 120 

vesicles that function as vectors and transport them from the fetal side to the uterine tissues 121 

where they deposit their cargo into target cells enhancing uterine inflammatory load. This 122 

exosome-mediated signaling is a novel mechanism for fetal-maternal communication. 123 

Objective: This report tested the hypothesis that oxidative stress can induce fetal amnion cells to 124 

produce exosomes, which function as a paracrine intermediary between the fetus and mother and 125 

biochemically signal readiness for parturition.  126 

Study Design: Primary amnion epithelial cells (AEC) were grown in normal cell culture 127 

(control) or exposed to oxidative stress conditions (induced by cigarette smoke extract). 128 

Exosomes were isolated from cell supernatant by sequential ultracentrifugation. Exosomes were 129 

quantified and characterized based on size, shape, and biochemical markers. Myometrial, 130 

decidual and placental cells (BeWo) were treated with 2x105, 2x107 and 2x109 control or 131 

oxidative stress derived AEC exosomes for 24 hours.  Entry of AEC exosomes into cells was 132 

confirmed by confocal microscopy of fluorescent-labelled exosomes. The effect of AEC 133 

exosomes on target cell inflammatory status was determined by measuring production of IL-6, 134 

IL-8, IL-1β, TNF-α and PGE2 by ELISA and inflammatory gene transcription factor (NF-κβ) 135 

activation status by immunoblotting for phosphorylated RelA/p65.  Localization of NANOG in 136 

term human myometrium and decidua obtained from women before labor and during labor was 137 

performed using immunohistochemistry. Data were analyzed by Wilcoxon-Mann-Whitney test to 138 
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compare effects of exosomes from control and oxidative stress -treated AEC cells on 139 

inflammatory status of target cells. 140 

Results: AECs released ~125 nm, cup shaped exosomes with ~ 899 and 1211 exosomes released 141 

per cell from control and oxidative stress induced cells respectively. AEC exosomes were 142 

detected in each target cell type after treatment using confocal microscopy. Treatment with AEC 143 

exosomes increased secretion of IL-6, IL-8 and PGE2 and activation of NF-κβ (each p<0.05) in 144 

myometrial and decidual cells. Exosome treatments had no effect on IL-6 and PGE2 production 145 

in BeWo cells. NANOG staining was higher in term labor myometrium and decidua compared to 146 

tissues not in labor. 147 

Conclusion: In vitro, AEC exosomes lead to an increased inflammatory response in maternal 148 

uterine cells whereas placental cells showed refractoriness. Fetal cell exosomes may function to 149 

signal parturition by increasing maternal gestational cell inflammation. 150 

151 
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INTRODUCTION  152 

A substantial body of evidence supports the hypothesis that parturition is sustained by an 153 

inflammatory process. Labor in humans and other mammals is associated with infiltration and 154 

activation of leukocytes, mainly neutrophils and macrophages, into the fetal (amniochorion) and 155 

uterine tissues (decidua myometrium and cervix).1-4 Clinical and animal (mainly mouse) studies 156 

have identified key roles of specific cytokines, chemokines and immune cell types in the 157 

parturition process. 5-15  Endocrine signals arising from the fetus, such as corticotropin-releasing 158 

hormone and adrenocorticotropic hormone, are postulated to function as a biologic clock 159 

translating organ maturation and triggering labor at term. These hormones are known to have 160 

pro-inflammatory effects on various tissues in vitro.16-18 However, the precise mechanisms by 161 

which signals from the fetus initiate human parturition remain a mystery.  162 

Our recent findings support the core hypothesis that oxidative stress and cellular senescence of 163 

the fetal (amniochorionic) membranes trigger human parturition by activating intrauterine 164 

inflammation. We have shown that human fetal membranes undergo a telomere-dependent 165 

process of progressive senescence throughout gestation, which is correlated with fetal growth.19, 
166 

20 Studies of senescence using human fetal membranes and cell culture have been corroborated in 167 

murine pregnancy models indicating that in utero cell senescence is driven by a p38mitogen 168 

activated protein kinase (MAPK) pathway.21-23  Senescence of the fetal membranes peaks at term 169 

resulting in dysfunctional fetal membranes. We postulate that signals arising from senescent fetal 170 

membranes are a proxy for completion of fetal growth and may trigger parturition. Premature 171 

senescence activation in the amniochorion is associated with preterm parturition.24, 25 172 

Examination of signals arising from senescent fetal membranes at term has identified two key 173 

classes of inflammatory factors: senescence associated secretory phenotype (SASP) and damage 174 
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associated molecular pattern markers (DAMPs) arising due to cell and cellular organelle 175 

injury.19, 23 SASPs and DAMPs mediate sterile (non-infectious) inflammation in fetal 176 

compartments at term during normal gestation. Many of the SASPs (inflammatory cytokines, 177 

chemokines, matrix degrading enzymes and growth factors) are activated in parturition.26-28 Two 178 

DAMPs released from senescent fetal cells, high mobility group box (HMGB) 1 and cell free 179 

fetal telomere fragments (cffTF), induce an inflammatory response in decidua and myometrium 180 

suggesting a paracrine communication from the senescing fetal membrane to uterine effector 181 

tissues of labor.22, 23, 26, 29, 30 Furthermore, in animal models injection of these DAMPs cause 182 

preterm birth.31 Based on these data, we hypothesize that sterile inflammatory signals from 183 

senescent fetal membranes are propagated from fetal to maternal compartments in a paracrine 184 

fashion to initiate labor.   185 

Exosomes are bioactive, spherical, cell-derived vesicles which are 30–150 nm in size and are 186 

secreted via exocytosis.32-34  Exosomes are comprised of bi-layered plasma membranes and 187 

contain molecular constituents of their cell of origin, including proteins, DNA, and RNA that 188 

reflect the physiological state of their parent cell. In addition to common membrane and 189 

cytosolic molecules, exosomes harbor unique, cell specific subsets of proteins. They contain high 190 

concentrations of cholesterol and detergent resistant lipid membranes, making them extremely 191 

stable and efficient carriers of molecules across tissue layers.33 Exosomes mostly act as 192 

transporters of paracrine signals between tissues, but can regulate intracellular pathways by 193 

sequestering signaling molecules from the cytoplasm, reducing their bioavailability.32, 33, 35-37 194 

It has recently been shown that senescent amnion epithelial cells (AECs) at term produce 195 

exosomes containing pro-inflammatory factors.38, 39  This finding supports the hypothesis that 196 

pro-inflammatory signals are transmitted from fetal to maternal tissues via AEC-derived 197 
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exosomes. Importantly, animal model studies have shown that exosomes injected into the 198 

amniotic fluid cavity access the maternal tissues by local and systemic routes.40 There are several 199 

studies which have reported exosome trafficking between tissues41, 42 and that indicate exosomes 200 

are released from cells from both the apical and basolateral compartments.43-47 Although these 201 

data support the core hypothesis that exosomes from the fetus access maternal tissues, the 202 

capacity for fetal exosomes in induce inflammatory changes in the maternal tissues remains 203 

unknown.  204 

The objectives of this study were to: 1) determine whether exosomes derived from AECs grown 205 

under normal cell culture conditions (control exosomes) and under oxidative stress conditions 206 

(oxidative stress (OS) exosomes) enter maternal uterine cells (decidua and myometrium) and 207 

fetal (syncytiotrophoblast) cells, and 2) determine whether oxidative stress affects the capacity 208 

for AEC-derived exosomes to induce an inflammatory response in decidual, myometrial and 209 

syncytiotrophoblast cells. In this study, we define exosomes as extracellular vesicles of size 210 

between 30-150 nm isolated from AECs using differential centrifugation.  We report that AEC 211 

derived exosomes produce proinflammatory changes in uterine myometrial and decidual cells. 212 

 213 

MATERIALS AND METHODS 214 

This study is basic science study utilizing fetal membrane derived cells, primary decidual cells, 215 

and myometrial and trophoblast cell lines. The University of Texas Medical Branch (UTMB) in 216 

Galveston, TX, USA, under an approved Investigational Review Board protocol, allowed the use 217 

of discarded placentas after delivery. Placentae were collected from women (18–40 years old) 218 

undergoing an elective repeat cesarean delivery at term (37-41 weeks gestation) prior to onset of 219 

labor. Exclusion criteria included: a history of preterm labor and delivery, premature rupture of 220 
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the membranes, preeclampsia, placental abruption, intrauterine growth restriction, gestational 221 

diabetes, Group B streptococcus carrier status, history of treatment for urinary tract infection, 222 

sexually transmitted diseases during pregnancy, chronic infections like HIV and hepatitis, and 223 

history of cigarette smoking or reported drug and alcohol abuse. 224 

 225 

Human amnion epithelial cell isolation and culture 226 

Amniotic membrane was processed as described previously to produce AEC monolayer 227 

cultures.19-21 Briefly, amnion membrane was cut into 2 cm x 2 cm pieces and digested twice in 228 

0.25% trypsin and 0.125% Collagenase A (Sigma–Aldrich, St. Louis, MO) in Hanks Balanced 229 

Salt Solution (HBSS; Mediatech Inc., Manassas, VA) for 35 minutes at 37°C. The tissue was 230 

filtered through a 70 µm cell strainer (Thermo Fisher Scientific, Waltham, MA) after each 231 

digestion and the trypsin was inactivated using complete Dulbecco's Modified Eagle Medium: 232 

Nutrient Mixture F-12 media (DMEM/F12; Mediatech Inc.) supplemented with 10% fetal bovine 233 

serum (FBS; Sigma-Aldrich), 10% Penicillin/Streptomycin (Mediatech Inc.) and 100 µg/mL 234 

epidermal growth factor (EGF; Sigma-Aldrich). After filtration, the collected cell filtrate was 235 

centrifuged for 10 minutes at 3000 RPM and the pellet was re-suspended in 3.0 mL of complete 236 

DMEM/F12. 3–5 million cells were placed per T75 flask and cultured in media containing 237 

complete DMEM/F12 media at 37°C, 5 in humidified 5% CO2 to 70–80% confluence. 238 

 239 

Primary amnion epithelial cells under normal (control) and oxidative stress cell culture 240 

conditions 241 

Cigarette smoke extract (CSE) was used to induce oxidative stress in amnion cells as detailed in 242 

prior studies21, 48, 49 with modifications. A single commercial cigarette (unfiltered CamelTM, R.J. 243 
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Reynolds Tobacco Co, Winston Salem, NC) was lit and the smoke was infused into 25 mL of 244 

exosome-free media, which consisted of DMEM/F12 supplemented with 10% exosome-free FBS 245 

made by ultracentrifuging FBS overnight at 100,000 rpm and filter sterilized.  This full strength 246 

CSE stock was sterilized by passing through a 0.22 µm Steriflip filter unit (Millipore, Billerica, 247 

MA). The stock CSE was diluted 1:50 in exosome-free media prior to use. When the AECs 248 

reached 70–80% confluence, their flask was rinsed with sterile 1x PBS followed by treatment 249 

with the exosome-free cell media (control conditions) or with exosome-free CSE containing cell 250 

media (oxidative stress conditions) at a 1:50 dilution and incubated at 37°C, 5% CO2, and 95% 251 

air humidity for a 48 hour treatment.  Total cell numbers/flask were counted by hemocytometer 252 

at the end of the 48 hour treatment. The culture media, from both control and oxidative stress 253 

treatments, were collected after 48 hours of treatment and stored at -80°C. 254 

 255 

Exosome isolation 256 

Prior to exosome isolation, cell supernatant media were thawed overnight and exosomes were 257 

isolated using differential ultracentrifugation as described previously, with modifications.38, 50, 51 258 

Exosomes isolated from normal cell culture condition media are referred to as “control 259 

exosomes” and those isolated from CSE treated (oxidative stress induced) media are referred to 260 

as “oxidative stress (OS) exosomes.” Briefly, the media was sequentially centrifuged at 4°C for 261 

10 minutes at 300g and for 20 minutes at 2,000g using a Sorvall Legend X1R and TX-400 262 

swinging bucket rotor (Thermo Fisher Scientific), followed by 30 minutes at 10,000g and 2 263 

hours at 100,000g using a Beckman Optima LX-80 ultracentrifuge with 50.1Ti and 70.1Ti rotors 264 

(Beckman Coulter). The resulting pellet after the 2 hour ultracentrifugation was re-suspended in 265 
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1x PBS and then centrifuged again at 100,000g for 1 hour. The pellet was re-suspended in 1x 266 

PBS and stored at -80°C. 267 

 268 

Transmission electron microscopy 269 

Exosome shape was determined using a JEOL transmission electron microscope (TEM). The 270 

protocol for this experiment can be seen in prior publications.38-40  Briefly, we treated 271 

formvar/carbon-coated 300-mesh copper grids with 10 seconds of hydrogen-oxygen plasma in a 272 

Gatan Solarus 950 plasma cleaning system (Gatan, Inc., Pleasanton, CA). The cleaned grid was 273 

covered in exosomes and left to dry at room temperature for 10 minutes. After three washes in 274 

Millipore water, the exosome-covered grids were negatively stained using phosphotungstic acid 275 

(PTA) and dried at room temperature.  Exosomes were viewed in a 120 keV JEM 1400 electron 276 

microscope (Jeol, Peabody, MA) with a minimum of 15 frames were viewed per sample.   277 

 278 

Nanoparticle tracking analysis with ZetaView 279 

Nanoparticle tracking analysis was performed using the ZetaView PMX 110 (Particle Metrix, 280 

Meerbusch, Germany) and its corresponding software (ZetaView 8.02.28).52, 53  Frozen 281 

exosomes in 1x PBS were thawed on ice.  A 1:500 dilution of the exosome sample was made 282 

with MilliQ water.  Samples of control or oxidative stress exosomes were loaded in the 283 

ZetaView Nanoparticle Tracking Analyzer and number of particles/ml and size distribution were 284 

counted for each sample.  The machine was cleaned between samples using filtered water.  The 285 

results of the ZetaView were used to calculate the number of exosomes produced per amnion cell 286 

for the two treatment types (control or oxidative stress). 287 

 288 
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Myometrial cell culture 289 

Myometrial cells were obtained from the hTERT-HMA/B myometrial cell line (a gift from Dr. 290 

Sam Mesiano, Case Western Reserve University, Cleveland, OH).  The hTERT-HMA/B is a 291 

clonal sub-line of hTERT-HM, a telomerase immortalized myometrial cell line produced from 292 

uterine fundus obtained from a premenopausal woman.54 The cells express the smooth muscle 293 

cell-specific genes calponin, h-caldesmon and smoothelin. They also express the oxytocin 294 

receptor and respond to oxytocin with increased intracellular calcium, which is typical of the 295 

myometrial cell phenotype. Myometrial cells were plated in a T75 flask and cultured in media 296 

containing DMEM, 1X (Corning Cellgro, Manassas, VA) supplemented with 10% charcoal 297 

stripped-FBS (Sigma-Aldrich), 10% Penicillin/Streptomycin plus L-glutamine (Sigma-Aldrich), 298 

gentamicin (Mediatech), hygromycin B (Life technologies, Carlsbad, CA), blastocidin 299 

(Invitrogen, Carlsbad, CA) at 37°C, and 5% CO2, and grown to 80% confluence. 300 

 301 

Decidual cell culture 302 

Decidua cells were isolated from placentas collected from women undergoing elective cesarean 303 

delivery at term who were not in labor.  The method for isolation was adapted from a protocol 304 

described by Mills et al. 2006.55 Briefly, fetal membrane was cut from placenta and amnion was 305 

removed. The tissue was washed with in pre-warmed 0.9%NaCl to remove blood and then cut 306 

into 2 inch squares. Blunt dissection of the decidua from chorion was performed using forceps 307 

and scalpel. The tissue was minced into small pieces and incubated in a digestion buffer (Hanks 308 

BSS with trypsin and DNAse I) and at 37° C for 30 minutes. The tissue was then centrifuged at 309 

2,000 rpm for 10 minutes at room temperature (RT). The supernatant was removed and pellet 310 

was re-suspended in a digestion buffer (Hank’s BSS with trypsin, DNAse I and collagenase type 311 
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IA) and incubated for 1 hour at 37° C. The digestion was neutralized and filtered through four 312 

layers of sterile gauze.  The collected cells were centrifuged at 2,000 rpm x 10 minutes at RT and 313 

the pellet was re-suspended in DMEM.  Next a pre-prepared Optiprep “column” was used with 314 

steps ranging from 4%-40% of 4 mL each.  The processed decidua cells were added to the top of 315 

the gradient, then centrifuged at 1,000g x 30 minutes at RT. Decidual cells were collected 316 

between densities of 1.027 – 1.038g/mL (between 4-6%).  The decidual cells were collected and 317 

washed with DMEM/F-12 50/50, 1X and then centrifuged at 2,000 rpm x 10 minutes at RT. The 318 

pellet was re-suspended in DMEM/F12 and placed in T25 flasks.  The primary cells were grown 319 

in media containing complete DMEM/F12 media plus 10% heat inactivated (HI) FBS (Sigma-320 

Aldrich), penicillin/streptomycin, and endothelial growth factor at 37°C, 5% CO2, and 95% air 321 

humidity to 70–80% confluence.  The purity of the cells was tested using antibodies to vimentin 322 

and cytokeratin.  We found that the cultured decidual cells were vimentin positive and 323 

cytokeratin negative. 324 

 325 

BeWo cell culture 326 

BeWo cells are a human choriocarcinoma cell line (provided by Dr. Robert N Taylor, Wake 327 

Forest University, Winston-Salem, NC). Despite being a cell line BeWo cells continue to reveal 328 

physiological characteristics of the villous trophoblast.56, 57  Cells were plated in a T75 flask and 329 

cultured in media containing Roswell Park Memorial Institute (RPMI) 1640, 1X (Corning 330 

Cellgro) media with Penicillin/Streptomycin and 10% HI-FBS at 37°C, 5% CO2, and 95% air 331 

humidity and grown to 70–80% confluence.  332 

 333 
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Immunofluorescence staining of exosomes and confocal microscopy to localize exosomes in 334 

recipient cells 335 

Isolated control and oxidative stress AEC exosomes were labeled with carboxyfluorescein 336 

succinimidyl ester (CFSE) by re-suspending the final exosome pellet in 7.5 µM CFSE.  337 

Exosomes were incubated at 37°C for 30 minutes then diluted with media containing 10% 338 

exosome-depleted FBS.  Exosomes were utlracentrifuged overnight (>16 hours) at 4°C and 339 

pellets were re-suspended in cold PBS.    Myometrial, decidual and BeWo cells were plated on 340 

glass coverslips at a density of 20-50,000 cells per slip and incubated overnight prior to treatment 341 

with CSFE labeled control or oxidative stress exosomes. After a 4 hour incubation with the 342 

labeled exosomes, cells were fixed with 4% paraformaldehyde (PFA), permeablized with 0.5% 343 

Triton X and blocked with 3% BSA in PBS.  To counter stain and to visualize cell morphology, 344 

cells were incubated with primary antibodies to α-smooth muscle actin (Affymetrix, Santa Clara, 345 

CA) (for myometrial and decidua) or anti-β actin (Sigma-Aldrich) (for BeWo cells) overnight at 346 

4°C 3% BSA in PBS. After washing the slides several times with PBS, slides were incubated 347 

with secondary antibody Alexa Fluor 488 or 594 (Life Technologies) diluted 1:400 in PBS for 1 348 

hour in the dark. Slides were then washed with PBS and treated with 4’, 6-diamidino-2-349 

phenylindole (DAPI) (Invitrogen by Thermo Scientific) then washed and then mounted using 350 

MOWIOL 4–88 (Sigma-Aldrich) mounting medium. Slides were allowed to dry overnight and 351 

then the cells were imaged using the LSM 510 Meta UV confocal microscope (63x) (Zeiss, 352 

Germany). Multiple (at least 5) cells on each slide were imaged with the confocal microscope. 353 

Images were obtained and analyzed using Image J (open source) to visualize z-stacks and 354 

confirm the location of the exosomes in regards to the cells.  3D reconstructions of the cells were 355 

created to further confirm the location of the exosomes in relation to the target cell. 356 
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 357 

Exosome treatments of cells 358 

Myometrial, decidual and BeWo cells were placed in 6 well plates and grown overnight.  The 359 

next day the cell media was removed, cells were washed with PBS and media was replaced with 360 

exosome free cell media. Cell treatments with control and oxidative stress exosomes were 361 

performed by adding them to the wells. Exosomes from either control or oxidative stress 362 

conditions were added in 3 titrations of 2x105, 2x107, and 2x109 exosomes/well.  The cells were 363 

allowed to incubate with the exosomes for 24 hours.  A negative control well was included that 364 

consisted of exosome free media only and a positive control well was included which was treated 365 

with LPS (100 ng/mL).  At the completion of the treatment, media was collected from each well 366 

and stored at -80° C. The cells were collected from the wells after being washed with PBS.  To 367 

collect the cells, wells were treated with radio immunoprecipitation assay buffer including 368 

phenylmethanesulfonyl fluoride (Fluka), protease inhibitor cocktail (Sigma-Aldrich) and Halt 369 

phosphatase inhibitor cocktail (Thermo-Scientific) and cells were manually scraped from the 370 

well using a cell scraper. The cells were then placed on ice for 10 minutes, vortexed for 10 371 

seconds, sonicated for 30 seconds, vortexed an additional 10 seconds, and placed on ice for 10 372 

minutes. The lysed cells were then flash frozen using liquid nitrogen and stored at -80° C. This 373 

experiment was repeated a total of 7 times.   374 

 375 

Exosome blocking experiments 376 

To determine if the effects in recipient cells were mediated by exosomes, several control 377 

experiments were performed. These included cold incubation of recipient cells and treatment 378 

with heat inactivated and sonicated exosomes. For the cold incubation treatment, the exact 379 
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treatments as explained in the last section were performed, with the following changes: cells 380 

treated with exosomes were incubated at 4° C for 6 hours. For heat inactivation and sonication 381 

treatments, the above described treatments were performed with the following changes: the 382 

exosomes (both control and oxidative stress) were either heated in a 65° C water bath for 30 383 

minutes or sonicated for 30 minutes prior to being added for the exosome treatment.58 A total of 384 

4x107 exosomes were added per well and treatment type. The cell media and cells were collected 385 

at the end of the 24 hour treatment as described above. 386 

 387 

Enzyme Linked Immunosorbent Assay for determining inflammatory marker response 388 

All of the media collected from exosome treatments and exosome blocking treatments were 389 

analyzed using an enzyme-linked immunosorbent assay (ELISA) for 5 common inflammatory 390 

cytokines/mediators: IL-1β, TNF-α, IL-6, IL-8, and PGE2. These inflammatory cytokines were 391 

chosen based on the results of a systematic review, performed by our lab, which indicated that 392 

these cytokines/mediators are present at the time of labor in all the gestational tissues included in 393 

this report.59 The ELISA was performed after media was thawed and spun to remove cellular and 394 

other debris. The media was pipetted into the ELISA plate wells as per kit instructions (R&D 395 

Systems- Quantikine ELISA). The results of the ELISA were obtained by using the Synergy H4 396 

microplate reader (BIO-TEK). 397 

 398 

Western Blot 399 

Western blot was performed to determine total and phosphorylated NF-κβ (Rel-A) from the 400 

myometrial, decidual and BeWo cells, which had been treated with 2x109 exosomes from control 401 

or oxidative stress induced cells. Cell samples, which had previously been suspended in RIPA, 402 
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were thawed and then centrifuged at 10,000 rpm for 20 minutes. The supernatant was collected 403 

and then a bicinchoninic acid assay (BCA) (Pierce, Rockford, IL) was performed to determine 404 

protein concentrations of the samples. Then SDS-PAGE on a gradient (4–15%) Mini-405 

PROTEAN1TGX™ Precast Gels (Bio-Rad, Hercules, CA) was used to separate protein samples. 406 

The samples were then transferred to a membrane using iBlot1Gel Transfer Device (Thermo 407 

Fisher Scientific). The membrane was blocked in 5% nonfat milk in 1x Tris buffered saline-408 

Tween 20 (TBS-T) buffer for 1 hour at room temperature.  The membrane was probed with a 409 

primary antibody for either Phospho Rel-A, total Rel-A, or total actin in either 5% nonfat milk or 410 

5% BSA in 1x Tris buffered saline- Tween 20 rocking overnight at 4°C. The next day, the 411 

membrane was washed with Tween 20 three times and then incubated with a secondary antibody 412 

for 1 hour.  The immunoreactive proteins were visualized using Luminata Forte Western horse 413 

radish peroxidase substrate (Millipore, Billerica, MA). The stripping protocol used between blots 414 

followed the instructions of Restore Western Blot Stripping Buffer (Thermo Fisher).  415 

 416 

Immunohistochemical analysis of amnion exosomes in maternal gestational tissues 417 

To determine that fetal cell derived material can reach maternal gestational tissue during 418 

parturition, we collected myometrial tissues and decidual tissues from pregnant women 419 

undergoing cesarean delivery (not in labor) or vaginal delivery (term labor) and looked for the 420 

presence of stem cell marker (NANOG), which is also expressed in amnion derived exosomes. 421 

Dual staining was performed for NANOG and CD9 (background marker).  Tissues were fixed in 422 

10% Neutral Buffered Formalin (NBF) for 24 hours at room temperature before embedding them 423 

in paraffin blocks and sectioning 4µm slices. Formalin-fixed paraffin-embedded (FFPE) were 424 

baked overnight at 50°C and tissue slides were re-hydrated the next day, by immersing in Xylene 425 
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three times for 10 minutes each followed by 100% EtOH, 95% EtOH, 70% EtOH, 50% EtOH, 426 

distilled water; each step performed twice for 5 minutes.  Antigen retrieval was then carried out 427 

in 2100 Antigen Retriever (Electron Microscopy Sciences, USA) with citrate buffer, pH 6.0 for 428 

20 minutes followed by cooling for approximately 2 hours and rinsed in TBS buffer. 429 

Endogenous peroxidase activity was quenched by incubation with 0.3% hydrogen peroxide for 430 

10 minutes. The tissue was then blocked for non-specific signals using Protein Block buffer 431 

(Abcam) in a moist chamber for 1 hour at room temperature. Sequential dual staining was 432 

performed with the polyclonal primary antibody NANOG (Rabbit, 1:400, Cell signaling #3580, 433 

Danvers, MA) followed by second primary antibody CD9 (Rabbit, 1:100, Novus Biologicals, 434 

Littleton, CO). Secondary antibody incubation was carried out for 30 minutes at room 435 

temperature with each antibody. NANOG was stained using DAB substrate (Abcam, Cambridge, 436 

United Kingdom) for 5 minutes. Slides were then washed in TBS-tween20, antigen retrieved and 437 

re-blocked prior to second primary antibody staining. CD9 staining was developed using AP 438 

substrate (Vector Blue) for 10 minutes. The Olympus light microscope BX43 (OLYMPUS) was 439 

used to image the slide and images were captured using software Q Capture Pro.  440 

To quantify NANOG expression in each tissue, images were loaded onto Image J (open source). 441 

After color deconvolution, regions of interest (9 regions/image) were randomly selected based on 442 

grid overlay and analyzed for NANOG staining intensity.   443 

 444 

Statistical analysis 445 

Each cell type (BeWo, Myometrial and Decidua) was either untreated (negative controls) or 446 

treated with exosomes at 2 x 105, 2 x 107 and 2 x 109 from either normal or CSE conditions to 447 

examine the distribution of inflammatory markers between untreated (negative controls) and 448 
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exosome treated cells (from both conditions). For each cell type, there were a total of 4 negative 449 

controls which served as the reference group and for each exosome treatment (2 x 105, 2 x 107 450 

and 2 x 109) there were 5 observations under normal conditions and 5 under CSE.  Normality for 451 

each inflammatory marker (IL-6, IL-8 and PGE2) was tested using the Kolmogorov-Smirnov 452 

test, with a p-value of <0.05 indicating that the distribution was non-normal. No markers had a 453 

normal distribution. The distribution of inflammatory markers was compared between controls 454 

(untreated cells) and exosome treated cells (from both normal and oxidative stress conditions) 455 

using non-parametric Wilcoxon-Mann-Whitney test (non-parametric analog to the independent 456 

samples t-test).  These analyses were conducted for each cell type. A p-value <0.05 was 457 

considered statistically significant. All analyses were conducted using SAS V9.2 (Cary, NC). 458 

IHC intensity values were analyzed using a t-test in Graphpad Prism (GraphPad, San Diego, 459 

CA). P < 0.05 was considered significant. 460 

 461 

RESULTS 462 

Exosome Quantification and Characterization 463 

The size and quantity of exosomes were determined using Zetaview analysis (Fig 1). Electronic 464 

microscopy of exosomes isolated from conditioned media samples showed round, cup-shaped 465 

exosomes with a size range between 50–150 nm (Fig 1A). AECs under normal cell culture 466 

(control) conditions produced an average of 9.4x109 particles/ml which correlates with 899 467 

exosomes/cell, while AECs under oxidative stress conditions produced 1.5x1010/ml which 468 

correlated with 1211 exosomes/cell (Fig 1B and C).  The average size of exosomes from control 469 

and oxidative stress treatments were 112 nm and 101 nm respectively. AEC exosomes were 470 
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shown in a previous experiment to contain exosome markers CD9, CD81 along with AEC 471 

marker NANOG (Fig 1D).38   472 

 473 

Exosomes were localized in recipient cells 474 

Confocal microscopy and z-stack analysis was used to localize exosomes in recipient 475 

myometrial, decidual and placental cells. As shown in figure 2, CFSE labelled control and 476 

oxidative stress exosomes were detected within myometrial, decidual and BeWo cells. The 477 

location of the exosomes within cells, as opposed to adjacent to the cells, was confirmed using z-478 

stack analysis and 3D reconstructions as shown in supplemental figure 2. 479 

 480 

AEC exosomes induce a pro-inflammatory response in myometrial and decidual cells 481 

To determine the effect of AEC derived exosomes to cause functional changes, we determined 482 

inflammatory cytokines and prostaglandin levels in cell culture supernatants after treatment with 483 

various doses of control and oxidative stress exosomes and compared them to the analytes from 484 

normal, untreated, cell cultures. The markers studied were shown to be associated with human 485 

parturition in each of these cell types.59  Control and oxidative stress AEC exosomes 486 

significantly increased the concentration of IL-6, IL-8 and PGE2 but not IL-1β or TNF-α in the 487 

media of myometrial and decidual cells compared to normal (untreated) cells in culture (Figures 488 

3-4, Supplemental Tables 1-2). The capacity for oxidative stress exosomes to increase 489 

myometrial and decidual cell media IL-6, IL-8 and PGE2 levels appeared to be slightly higher 490 

compared to control AECs. A dose dependent effect of exosomes (control or oxidative stress) to 491 

stimulate inflammatory response was not observed in our experiments. BeWo cells only 492 

produced detectable levels of IL-6 and PGE2 and none of the other cytokines studied.  Control 493 
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and oxidative stress exosomes had no effect on BeWo cell media IL-6, IL-8, PGE2, IL-1β and 494 

TNF-α levels (Figure 5, Supplemental Table 3). 495 

 496 

Positive control experiments show exosome-mediated effect  497 

To confirm that cells are responding to the treatments and that the effects are truly mediated by 498 

exosomes, multiple control experiments were performed. LPS treatment (100 ng/ml) was used as 499 

a positive control to confirm inflammatory responses from each cell type. LPS produced 500 

significant increase in cytokine production from all cell types compared to untreated cells. A 501 

sample of these data are shown in supplemental Figure 1. IL-6 levels after LPS treatment were 502 

higher in all cell types compared to control. However, IL-6 concentrations after LPS treatment 503 

was similar to that observed after exosome treatment. In BeWo cells, LPS significantly increased 504 

only IL-6, but not IL-8 or PGE2. Control data from LPS treatments are also graphically 505 

represented in supplemental table 4.  506 

 507 

Determination of exosome mediated cytokine response 508 

To confirm exosome specificity of stimulation, media samples from the exosome blocking 509 

experiments were subjected to ELISA.  Incubation of cells in cold lead to decreased IL-6, IL-8 510 

and PGE2 production by all three cell types. This suggests that exosome entry into these cells 511 

were blocked due to reduced endocytosis at 4oC. Two other experiments were performed to 512 

disrupt exosomes and cargo. Media samples from cells treated with a single dose of exosomes 513 

(107) whose cargo was inactivated by either heat inactivation or sonication were compared to 514 

control and control or oxidative stress exosome treatments. Heating and sonicating the exosomes 515 

prior to treatment lead to no change in IL-6, IL-8, and PGE2 levels which were similar to 516 
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negative control treatments. This suggests that the exosome’s cargo, either destroyed or 517 

disrupted, were not sufficient to cause inflammatory mediator response from these cells 518 

(supplemental Figure 1 and supplemental table 4). These data partly confirmed exosome 519 

mediated effects. 520 

 521 

Exosomes increase NF-κβ activation in myometrial and decidual cells  522 

Exosomes, regardless of source (control or oxidative stress) produced inflammatory response by 523 

increasing IL-6, IL-8 and PGE2 release suggesting activation of NF-κβ, a key transcription 524 

activator by exosomes. To test this, we performed western blot analysis for p-RelA/p65, total 525 

RelA/p65, and actin on cells collected from myometrial, decidual, and BeWo cells. Myometrial 526 

and decidual cells increased p-RelA in response to exosomes (regardless of control or oxidative 527 

stress) and BeWo cells increased less.  Densitometry (based on the ratio of active/total [mean 528 

arbitrary units]) (Figure 6 bar graphs) corroborated that myometrial and decidual cells had higher 529 

p-RelA than controls after treatment with both control and oxidative stress exosomes (Figure 6); 530 

however, RelA baseline activation was similar between normal BeWo cells compared to cells 531 

exposed to exosomes (see bar graphs). This further verifies the previous cytokine data presented 532 

which indicates that increased cytokine and PGE2 levels induced by both control and oxidative 533 

stress exosomes are likely mediated by increased phosphorylation of NF-κβ by exosomal cargo. 534 

BeWo cells are refractory to NF-κβ activation by AEC exosomes. 535 

 536 

Increased localization of NANOG in myometrial and decidual tissues at term labor 537 

Immunohistochemical analysis and dual staining of NANOG showed increased staining of 538 

NANOG (brown) in myometrial tissues and decidual tissues from term delivery samples   539 
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compared to not in labor deliveries (Fig 7).  Semi quantitative estimation of this data (as shown 540 

in bar graphs) showed significantly high staining in both term labor tissues. 541 

  542 

 543 

COMMENT 544 

Principal findings of the study 545 

This study tested if senescent fetal amnion epithelial cell derived exosomes can cause 546 

inflammatory changes in maternal and placental tissues. Our main findings are: 1. AECs produce 547 

exosomes that are quantitatively the same regardless of cell culture conditions (Figure 1). 2. AEC 548 

exosomes are taken up by myometrial, decidual and BeWo cells (Figure 2 and supplemental 549 

figure 2). 3. Treatment with control and oxidative stress AEC exosomes increase production of 550 

pro-labor inflammatory mediators (IL-6, IL-8 and PGE2) and cause activation of NF-κβ in 551 

maternal myometrial and decidual cells (Figure 3 and 4 and 6). 4. Production of pro-552 

inflammatory mediators was reduced when exosome uptake was blocked (Supplemental figure 1 553 

and table 4).  554 

Although feto-maternal endocrine mediators have been reported to be associated with initiation 555 

of labor,60-64 the exact pathway of labor initiation remains a mystery.65 Inflammatory activation 556 

is one of the functional facilitators of parturition in all gestational tissues, as an imbalanced 557 

inflammatory state transitions quiescent gestational tissues to an active state.66-70 Thus, factors 558 

that increase inflammatory load, directed either by endocrine signals or paracrine signals, can 559 

cause mechanistic activation of the labor process.30, 71, 72  This process ideally occurs when fetal 560 

growth and maturation are sufficient to ensure newborn survival. Based on recent findings of 561 

senescence in various gestational tissues that coincide with fetal growth, and our findings in fetal 562 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

26 
 

membrane models showing that membrane senescence and damage are associated with 563 

parturition, we hypothesized that senescent fetal membranes generate inflammatory mediators to 564 

signal fetal readiness for parturition.25, 73, 74 We propose that these signals are propagated from 565 

fetal tissues to the uterine parturition effector tissues (decidua and myometrium) via fetal cell 566 

derived exosomes. 
567 

 568 

We believe that AEC exosomes as well as other cell membrane derived vesicles can reach 569 

maternal tissues in multiple ways; 1. Basolateral secretion of AEC derived exosomes than can 570 

traverse through layers and reach the uterine tissues 2. Apical secretion of exosomes into 571 

amniotic fluid, taken up by fetus and reaching maternal systemic circulation 3.  Exosomes 572 

reaching maternal circulation and thus reaching maternal reproductive tissues by crossing 573 

placental barriers, specifically those exosomes released from membrane cells overlaying the 574 

placenta.  Our lab has shown in animal models that exosomes in the fetal compartment can reach 575 

the maternal compartment either via systemic spread or by diffusion through tissue layers. 576 

Fluorescently labeled AEC exosomes injected into the amniotic cavity of pregnant mice were 577 

identified in maternal gestational tissues and blood stream, indicating that exosomes are able to 578 

traverse the maternal fetal barrier.40 Several studies in other labs have reported exosome 579 

trafficking between tissues.41, 42 There is also evidence in multiple studies to indicate that 580 

exosomes are released from cells from both the apical and basolateral compartments.43-47  581 

 582 

Fetal exosomes, irrespective of the physiologic status of cell of origin, cause inflammatory 583 

activation in maternal cells 584 
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The number of exosomes released from cells under normal culture conditions or after CSE 585 

treatments were similar. This can partly be explained by the fact that the same number of cells 586 

were treated for each treatment type. Additionally, CSE treatment alone is not sufficient to cause 587 

an increase in exosome quantity but does lead to a change in exosome cargo content reflecting 588 

the physiologic state of cells.38 A key finding to highlight is that regardless of the source of 589 

exosomes (from cells grown under normal or oxidative stress conditions), exosome treatments 590 

produced inflammation in recipient maternal cells (myometrial and decidual cells).  591 

It is not totally unexpected that exosomes from control environments would cause an 592 

inflammatory response as we have reported in a proteomic analysis of AEC exosomes derived 593 

under control conditions that they contain markers suggestive of NF-κβ signaling.38 Oxidative 594 

stress treatment with CSE also resulted in exosome cargo with inflammatory signals but mostly 595 

contained inflammation mediated  by transforming growth factor (TGF)β pathway.38 TGFβ is 596 

produced in fetal membrane cells in response to CSE treatment and oxidative stress and it is a 597 

well-known activator of epithelial mesenchymal transition (EMT).75-77 EMT is an inflammatory 598 

state78 and Chaudhuri et al. has shown fetal membrane EMT occurring at term.79 Similar findings 599 

were reported by Mogami H et al in fetal membranes rupture models.80 Ongoing data from our 600 

laboratory suggest exosomes can alter the fetal membrane microenvironment at term enhancing 601 

senescence, EMT and inflammation.  602 

Exosomes are generated by cells and propagated throughout gestation. It is plausible that 603 

minimal levels of inflammation generated by normal cell exosomes during gestation are used for 604 

tissue remodeling and their quantity and cargo are insufficient to cause labor related 605 

inflammation. We speculate that oxidative stress builds up at term produces an exclusive group 606 

of exosomes that can induce unique inflammatory conditions resulting in parturition.  As shown 607 
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in Fig. 6, oxidative stress derived exosomes induced NF-κβ activation in myometrial cells, which 608 

is known to be associated with inflammation and functional progesterone withdrawal.  Our 609 

previous work has also shown that CSE induced oxidative stress leads to packaging of 610 

p38MAPK, an activated form of stress signaler, into AEC exosomes.38 p38MAPK has been 611 

shown to be a potential mediator of functional progesterone withdrawal.81, 82 
612 

In this study we used primary decidual cells and myometrial and placental cell lines. It can be 613 

argued that primary vs cell line differences may impact our observed outcome. However, 614 

similarities in response to exosomes between decidual primary cells and myometrial cell line 615 

cells’ suggest that comparable outcomes can be expected irrespective of cell types. We 616 

acknowledge that more studies are needed using primary cells as well as intact tissues to verify 617 

our data.  618 

 619 

Placental cells are refractory to immune response by amnion exosomes 620 

 Placental cells were found to be refractory to stimulation by AEC exosomes. Regardless of 621 

concentration or exosome origin (control vs oxidative stress), placental (BeWo) cells did not 622 

respond to exosomes or show any inflammatory change.  It is possible that AEC derived 623 

exosomes are not capable of generating an inflammatory response from placenta.  It is also 624 

possible that the inflammatory response may be different in primary cells as compared to the 625 

BeWo cell line. A study by Koh et al. found while BeWo cells will produce IL-6 after 626 

stimulation with OS, they will not produce IL-8 or IL-1β.83 Our results indicated no increase in 627 

IL-6 production by placental (BeWo) cells after treatment with exosomes which makes the 628 

conclusion that placental cells may be refractory to AEC exosomes more plausible. We speculate 629 

that exosomes show tropism and they are capable of causing functional impact in specific target 630 
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tissues and likely at specific times. The mechanism of exosomal tropism and its selection of 631 

target tissues are yet to be determined. Specific surface proteins acquired by exosomes under 632 

distinct physiologic state of a cell may determine tissue tropism and the functional role of 633 

exosomes. Proximity of placenta and fetal membranes makes placenta less likely to respond to 634 

inflammatory challenges produced by membranes because any inflammatory response by 635 

membranes spread via exosomes can be detrimental to the survival of placenta and thus the fetus.  636 

We do not rule out that refractoriness of BeWo cells may be attributed to transitioned state of 637 

trophoblast cells and primary cytotrophoblast cells may have yield different results. 638 

 
639 

Determining fidelity of exosomal functions 640 

In this current study, multiple experiments were conducted where exosome uptake was blocked. 641 

Exosome uptake or functional contribution of exosomes are mostly manifested by the following 642 

routes: 1. Endocytosis of exosomes and cytoplasmic delivery of cargo84 2. Specific ligand 643 

(markers on exosomes) – receptor (on recipient cell) interaction85, 86 3. Fusion of exosomes 644 

directly with plasma membrane and release of cargo87 4. Delivery of cargo into the environment 645 

of the target cell after undergoing lysis outside the recipient cell.33, 88  We primarily tested the 646 

endocytosis effect, a well reported mechanism of exosome entry. Energy dependent endocytosis 647 

was stopped by incubating cells at 4° C, as described in prior studies of exosome uptake and 648 

function,88-92 which lead to a reduced production of IL-6, IL-8 and PGE2 by all cell types. This 649 

indicates that exosomes are contributing to the increased inflammatory mediator production, 650 

predominantly via endocytosis.  We also either heated or sonicated the exosomes prior to 651 

treatment.58  Heating can denature the surface proteins of the exosome while sonication breaks 652 

the exosome open. Heating or sonicating the exosomes prior to treatment reduces the number of 653 
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routes through which the exosome can be taken up by the target cell, but likely releases the 654 

contents of the exosomes into the recipient cell extra-cellular environment. There was not a 655 

significant increase in cytokine production after treating with heated or sonicated exosomes 656 

(supplemental figure 1).   This indicates that the AEC exosomes can exert effects via several 657 

different routes in gestational cells. 658 

Exosomes may contain various molecules and it was theoretically possible that the AEC 659 

exosomes contained the inflammatory analytes of interest.  To test this, as a part of an ongoing 660 

study in our laboratory, we verified whether exosomes from control and oxidative stress 661 

exosomes carried cytokines contributing to the observed data. For this, a proteomic analysis of 662 

the exosomes was conducted by Dr. Salomon’s laboratory using LC/MS-MS approach and we 663 

report that none of the analytes measured in this study (IL-6, IL-8 and PGE2) were detectable in 664 

our exosomes preparations from control or oxidative stress conditions. 665 

 666 

Oxidative stress of amnion epithelial cells lead to production of exosomes with pronounced 667 

effect on target cells 668 

Exosomes produced under oxidative stress conditions have a more dominant effect than those 669 

produced under normal cell conditions (control exosomes) as almost all treatments using 670 

oxidative stress exosomes increased pro-parturient biomarkers in decidua and myometrium.  671 

Dose dependent effect was not seen at the end of a 24 hour incubation and it is likely that all 672 

doses used are either saturating the response or that additional doses or longer incubation may be 673 

necessary to show the true kinetics of cytokine response.  674 

 675 

Summary 676 
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The results of our study indicate that exosomes produced by AECs are capable of being taken up 677 

by other gestational tissue cells and cause inflammatory, labor-promoting changes in maternal 678 

gestational cells.  This indicates that AEC derived exosomes may be involved in the labor 679 

cascade by functioning as messengers carrying specific signals between the fetal and maternal 680 

compartments. We conclude that AEC exosomes are a novel paracrine mechanism of fetal-681 

maternal communication.  682 
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Figure legends: 924 

Figure 1: Characterization of control and oxidative stress exosomes   925 

1A – Transition electron micrograph of control and oxidative stress exosomes show round/cup 926 

shaped exosomes 927 

1B – Total number of particles/ml of media show no difference in exosomes between treatments. 928 

1C – Number of exosomes/AEC from both control and oxidative stress treatments were not 929 

different. 930 

1D – Both control and oxidative stress derived AEC exosomes showed exosome markers CD9, 931 

CD81 and stem cell marker NANOG. 932 

 933 

Figure 2: Localization of AEC derived exosomes (from control and oxidative stress 934 

treatments) inside gestational cells. Carboxyfluorescein succinimidyl ester (CFSE) labelled 935 

exosome localization inside myometrial, decidual and BeWo cells. Left panel – Myometrial 936 

cells; Middle panel – Decidual cells; and Right panel – BeWo cells. A – DAPI; B – Cell specific 937 

marker – α-smooth muscle actin (myometrium and decidua) or β-actin (BeWo); C – CFSE 938 

labelled exosomes; D: merged images. 939 

 940 

Figure 3: ELISA data showing IL-6 (A), IL-8 (B) and PGE2 (C) in myometrial cells. 941 

Comparisons were made between IL-6, IL-8, or PGE2 analyte concentrations in negative control 942 

cell media and concentrations in media after treatment of myometrial cells with each dose (Exo 943 

10^5, 10^7, 10^9) of either control (blue) or oxidative stress (orange) AEC derived exosomes. All 944 

experiments include n=5. Significant results (p<0.05) between specific treatment compared to 945 

untreated control cell media are marked with an asterisk (*). 946 
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 947 

Figure 4: ELISA data showing IL-6 (A), IL-8 (B) and PGE2 (C) in decidual cells. 948 

Comparisons were made between IL-6, IL-8, or PGE2 analyte concentrations in negative control 949 

cell media and concentration in media after treatment of decidual cells with each dose (Exo 10^5, 950 

10^7, 10^9) of either control (blue) or oxidative stress (orange) AEC derived exosomes.  All 951 

experiments include n=5. Significant results (p<0.05) between specific treatment compared to 952 

untreated control cell media are marked with an asterisk (*). 953 

 954 

Figure 5: ELISA data showing IL-6 (A) and PGE2 (B) in BeWo cells.  955 

Comparisons were made between IL-6 or PGE2 analyte concentrations in negative control cell 956 

media and concentration in media after treatment of BeWo cells with each dose (Exo 10^5, 10^7, 957 

10^9) of either control (blue) or oxidative stress (orange) AEC derived exosomes. All 958 

experiments include n=5. Significant results (p<0.05) between specific treatment compared to 959 

untreated control cell media are marked with an asterisk (*). 960 

 961 

Figure 6: Activation of NF- κB as determined by RelA/p65 Phosphorylation.  962 

Top panel RelA/p65; Middle panel – Total RelA/p65; Bottom Panel – Actin 963 

A – Myometrial cells – Myometrial cells= normal myometrial cells in culture; Control 964 

exosomes= myometrial cells treated with exosomes (dose 2x109) from AEC grown under normal 965 

cell culture conditions; OS exosomes= myometrial cells treated with oxidative stress exosomes 966 

(dose 2x109). 967 
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B – Decidual cells – Decidual cells= normal decidual cells in culture; Control exosomes= 968 

decidual cells treated with exosomes (dose 2x109) from AEC grown under normal cell culture 969 

conditions; OS exosomes= decidual cells treated with oxidative stress exosomes (dose 2x109). 970 

C – BeWo cells – BeWo cells= normal BeWo cells in culture; Control exosomes= BeWo cells 971 

treated with exosomes (dose 2x109) from AEC grown under normal cell culture conditions; OS 972 

exosomes= BeWo cells treated with oxidative stress exosomes (dose 2x109). 973 

 974 

Figure 7: Immunohistochemical localization of NANOG (amnion stem cell marker 975 

constitutively expressed in AEC derived exosomes) in term labor and term not in labor 976 

gestational tissues 977 

A – Term not in labor (TNIL) and term in labor (TIL ) myometrium – Brown staining 978 

indicates NANOG (fetal amnion stem cell marker) and blue staining indicates CD9 (background 979 

marker). NANOG expression was higher in term labor myometrium than term not in labor 980 

myometrium.  981 

B – Quantitation of NANOG staining expression indicating significantly higher NANOG in TIL 982 

compared to TNIL myometrial tissue. 983 

C - Term not in labor (TNIL) and Term in labor (TIL ) decidua (attached to chorion layer 984 

of fetal membranes) – Brown staining indicates NANOG (fetal amnion stem cell marker) and 985 

blue staining indicates CD9 (background marker). NANOG expression was higher in term labor 986 

decidua than term not in labor decidua. 987 

D – Quantitation of NANOG staining expression indicating significantly higher NANOG in TIL 988 

compared to TNIL decidua. 989 

 990 
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Supplemental Figures and Tables: 991 

Supplemental Figure 1: IL-6 concentration in media from various control experiments 992 

performed to confirm exosome specific activation of inflammatory mediators. Shown here is an 993 

example of myometrial (A), decidual (B) and BeWo cells (C).  994 

On the x axis are all the treatments included:  995 

Control: negative control  996 

Lipopolysaccharide (LPS) was used as a positive control 997 

Cold – cold treatment of cells to prevent endocytosis of exosomes 998 

Heat inactivation – to disrupt exosomal membrane and denature proteomic cargo 999 

Sonication - to disrupt exosomal membrane and denature proteomic cargo 1000 

Control and oxidative stress exosomes treatments at a dose of 107 
1001 

A – Myometrial cells treated with LPS and control and oxidative stress exosomes show increased 1002 

IL-6 compared to control. Cold, heat and sonication did not change IL-6 compared to negative 1003 

control 1004 

B - Decidual cells treated with LPS and control and oxidative stress exosomes show increased 1005 

IL-6 compared to control. Cold treatment reduced IL-6 more than negative control settings 1006 

whereas heat and sonication did not change IL-6 compared to negative control. 1007 

C – BeWo cells increase IL-6 in response to LPS. No change was seen with any other conditions 1008 

including exosome treatment.  1009 

 1010 
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Supplemental Figure 2:  3D reconstructions of confocal images of each target cell studied.  1011 

Blue is DAPI which shows the nucleus.  Red is a cytoplasmic protein either α or β actin. 1012 

Exosomes are shown in green.  Exosomes are identified within each cell type (myometrial, 1013 

decidual and BeWo) by yellow arrows. 1014 

 1015 

Supplemental Table 1A: Cytokine and PGE2 concentrations in myometrial cells treated with 1016 

control exosomes. 1017 

IL-6 Control Exo 105 Exo 107 Exo 109 

Mean ± SD 62.5±13.3 171.3±43.1 190.6±62.6 166.4±58.0 

Median (IQR) 60.3 (21.5) 190.4 (47.8) 190.4 (107.9) 147.7 (78.6) 

p - Untreated cells vs control exosomes 0.03 0.03 0.03 

 1018 

IL-8 Control Exo 105 Exo 107 Exo 109 

Mean ± SD 

 

19721±18210.7 99892.8±21968.2 90793.1±23044.6 114652.2±24259.5 

Median (IQR) 11764.0 (200059) 103786.9 (31454) 88936.9 (37985.0) 24259.5 (119391.2) 

p - Untreated cells vs control exosomes 0.03 0.03 0.03 

 1019 

PGE2 Control Exo 105 Exo 107 Exo 109 

Mean ± SD 1120.1±60.5 1301.5±62.9 1179.8±60.5 1064.1±47.2 

Median (IQR) 1097.8 (83.5) 1300.6 (97.4) 1184.6 (99.2) 1073.4 (69.3) 

p - Untreated cells vs control exosomes 0.03 0.19 0.31 

 1020 

 1021 

 1022 

 1023 

 1024 

 1025 

 1026 
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Supplemental Table 1B: Cytokine and PGE2 concentrations in myometrial cells treated with 1027 

exosomes derived from AEC exposed to cigarette smoke extract (Oxidative stress (OS) 1028 

exosomes). 1029 

IL-6 Control OS Exo 105 OS Exo 107 OS Exo 109 

Mean ± SD 62.5±13.3 165.2±48.4 192.7±37.67 178.6±12.31 

Median (IQR) 60.3 (21.5) 149.9 (58.2) 186.3 (56.0) 178.7 (21.0) 

p - Untreated cells vs OS exosomes 0.03 0.03 0.03 

 1030 

IL-8 Control OS Exo 105 OS Exo 107 OS Exo 109 

Mean ± SD 19721.4±18210.7 99177.3±27778.8 130680.0±26657.2 131687±35418 

Median (IQR) 11764.0 (200059.0) 107778.5 (37597.0) 119572.0(29365.0) 137049.3(51333.0) 

p - Untreated cells vs OS exosomes 0.03 0.03 0.03 

 1031 

PGE2 Control OS Exo 105 OS Exo 107 OS Exo 109 

Mean ± SD 1120±60.5 1650.0±174.4 1304.9±174.4 1360.0±101.5 

Median (IQR) 1097.8 (83.5) 1705.6 (240.0) 1337.4(154.8) 1373.2 (153.3) 

p - Untreated cells vs OS exosomes 0.03 0.06 0.03 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 
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Supplemental Table 2A: Cytokine and PGE2 concentrations in decidual cells treated with 1045 

control exosomes. 1046 

IL-6 Control Exo 105 Exo 107 Exo 109 

Mean ± SD 22.8±14.1 101.8±12.1 113.6±31.8 75.1±3.290 

Median (IQR) 18.4 (16.2) 104.8 (18.6) 119.3(45.6) 75.8 (4.6) 

p - Untreated cells vs control exosomes 0.03 0.03 0.03 

 1047 

IL-8 Control Exo 105 Exo 107 Exo 109 

Mean ± SD 148.1±109.1 687.4±312.3 747.6±464.9 1546±217.8 

Median (IQR) 150.4 (186.5) 800.5 (363.3) 818.1 (715.2) 1589.2 (274.2) 

p - Untreated cells vs control exosomes 0.11 0.11 0.03 

 1048 

PGE2 Control Exo 105 Exo 107 Exo 109 

Mean ± SD 18.0±1.5 23.5±2.2 19.2±3.1 24.8±4.4 

Median (IQR) 18.3 (2.4) 23.3 (3.5) 18.7 (4.7) 22.7 (4.5) 

p - Untreated cells vs control exosomes 0.03 0.66 0.03 

 1049 

Supplemental Table 2B: Cytokine and PGE2 concentrations in decidual cells treated with 1050 

exosomes derived from AEC exposed to cigarette smoke extract (Oxidative stress (OS) 1051 

exosomes). 1052 

IL-6 Control OS Exo 105 OS Exo 107 OS Exo 109 

Mean ± SD 22.8±14.1 94.2±17.4 100.7±27.5 150.8±12.4 

Median (IQR) 18.4 (16.2) 92.8 (27.2) 104.9 (39.7) 148.6 (18.3) 

p - Untreated cells vs OS exosomes 0.03 0.03 0.03 

 1053 

 1054 
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IL-8 Control OS Exo 105 OS Exo 107 OS Exo 109 

Mean ± SD 148.1±109.1 672.8±351.7 673.1±334.7 946.9±478.3 

Median (IQR) 150.4 (186.5) 676.9(505.8) 772.6 (482.6) 936.1 (703.4) 

p - Untreated cells vs OS exosomes 0.06 0.11 0.03 

 1057 

PGE2 Control OS Exo 105 OS Exo 107 OS Exo 109 

Mean ± SD 18.0±1.5 30.4±4.2 32.1±6.1 34.24±3.1 

Median (IQR) 18.3 (2.4) 29.2(6.4) 32.9 (8.5) 33.4 (3.9) 

p - Untreated cells vs OS exosomes 0.03 0.03 0.03 

 1058 

 1059 

Supplemental Table 3A: Cytokine and PGE2 concentrations in BeWo cells treated with control 1060 

exosomes. 1061 

IL-6 Control Exo 105 Exo 107 Exo 109 

Mean ±SD 57.0±6.0 52.6±9.4 48.6±7.2 47.4±11.6 

Median (IQR) 55.4 (8.3) 50.6 (11.5) 46.5 (10.3) 47.1 (14.8) 

p - Untreated cells vs control exosomes 0.31 0.19 0.19 

 1062 

PGE2 Control Exo 105 Exo 107 Exo 109 

Mean ±SD 0.09± 0.01 0.12± 0.02 0.12± .01 0.09 ± 0.01 

Median (IQR) 0.10 (0.01) 0.12 (0.03) 0.12 (0.01) 0.09 (0.02) 

p - Untreated cells vs control exosomes 0.03 0.03 0.89 
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Supplemental Table 3B: Cytokine and PGE2 concentrations in BeWo cells treated with 1070 

exosomes derived from AEC exposed to cigarette smoke extract (Oxidative stress (OS) 1071 

exosomes). 1072 

IL-6 Control OS Exo 105 OS Exo 107 OS Exo 109 

Mean ±SD 57.0±6.0 47.1±9.1 50.5±10.1 54.7±16.1 

Median (IQR) 55.4 (8.3) 46.0 (14.9) 54.3 (13.1) 50.2 (22.7) 

p - Untreated cells vs OS exosomes 0.19 0.67 0.67 

 1073 

PGE2 Control OS Exo 105 OS Exo 107 OS Exo 109 

Mean ±SD 0.09±0.01 0.10±0.01 0.10±0.01 0.10±0.02 

Median (IQR) 0.10 (0.01) 0.10 (0.02) 0.10 (0.02) 0.10 (0.02) 

p - Untreated cells vs OS exosomes 0.56 0.67 0.19 

 1074 
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Supplemental Table 4 – Control experiments used to show exosome mediated immune 1076 

activation effects in myometrial, decidual and BeWo cells. 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

 1083 

 1084 

 1085 

  LPS Cold treatment 
of cells 

Heat 
inactivation of 

exosomes 

Sonication of 
exosomes 

IL-
6 

IL-
8 

PGE2 IL-
6 

IL-
8 

PGE2 IL-
6 

IL-
8 

PGE2 IL-
6 

IL-
8 

PGE2 

Myometrium  ↑ ↑ ↑ ↓ ↓ ↔ ↔ ↔ ↔ ↓ ↔ ↔ 

Decidua ↑ ↑ ↑ ↓ ↓ ↓ ↔ ↔ ↔ ↔ ↔ ↔ 

BeWo ↑ ↔ X ↓ ↔ ↓ ↔ ↔ ↔ ↔ ↔ ↔ 

↑ Increase 
↓ Decrease 
↔ No change 
X not detectable  
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