5,177 research outputs found
Development of high energy density primary batteries First quarterly report, 22 Jun. - 21 Oct. 1965
Electrode and electrolyte studies for lithium- copper fluoride batterie
Development of high energy density primary batteries 200 watt hours per pound total battery weight minimum Final report, 10 Jun. 1964 - 9 Jun. 1965
High energy density lithium-anode primary cells developed with energy-to-weight ratios over 200 watt hours per poun
Free energy cascade in gyrokinetic turbulence
In gyrokinetic theory, the quadratic nonlinearity is known to play an
important role in the dynamics by redistributing (in a conservative fashion)
the free energy between the various active scales. In the present study, the
free energy transfer is analyzed for the case of ion temperature gradient
driven turbulence. It is shown that it shares many properties with the energy
transfer in fluid turbulence. In particular, one finds a forward (from large to
small scales), extremely local, and self-similar cascade of free energy in the
plane perpendicular to the background magnetic field. These findings shed light
on some fundamental properties of plasma turbulence, and encourage the
development of large eddy simulation techniques for gyrokinetics.Comment: 4 pages, 2 Postscript figure
Modeling of dielectric material interfaces for the radial point interpolation time-domain method
Copyright © 2009 IEEEThe Radial Point Interpolation Time-Domain (RPITD) method is a flavor of meshless domain discretization methods applicable to computational electromagnetics. Meshless methods do not require an explicit mesh topology, but rather rely on a representation of a physical model as a node distribution. This is firstly advantageous for modeling of conformal boundaries and multi-scale geometries. But as the most attractive feature, the node arrangements can be adapted on-the-fly. The RPITD method is based on interpolation of the field distribution using radial and monomial basis functions. This paper introduces a technique to model arbitrarily shaped dielectric interfaces in the framework of meshless methods. Using the proposed technique, errors associated to the interpolation of non-smooth fields at material interfaces are reduced, as demonstrated for 2D-TE modes. This allows for accurate modeling of interfaces with dielectric contrast. Unlike previous publications which modify the basis functions at interfaces, a physically motivated correction term is introduced here. Errors in the vicinity of material interfaces decrease significantly and simulation accuracy is generally improved.Thomas Kaufmann, Thomas Merz, Christophe Fumeaux and Rudiger Vahldiec
High Performance P3M N-body code: CUBEP3M
This paper presents CUBEP3M, a publicly-available high performance
cosmological N-body code and describes many utilities and extensions that have
been added to the standard package. These include a memory-light runtime SO
halo finder, a non-Gaussian initial conditions generator, and a system of
unique particle identification. CUBEP3M is fast, its accuracy is tuneable to
optimize speed or memory, and has been run on more than 27,000 cores, achieving
within a factor of two of ideal weak scaling even at this problem size. The
code can be run in an extra-lean mode where the peak memory imprint for large
runs is as low as 37 bytes per particles, which is almost two times leaner than
other widely used N-body codes. However, load imbalances can increase this
requirement by a factor of two, such that fast configurations with all the
utilities enabled and load imbalances factored in require between 70 and 120
bytes per particles. CUBEP3M is well designed to study large scales
cosmological systems, where imbalances are not too large and adaptive
time-stepping not essential. It has already been used for a broad number of
science applications that require either large samples of non-linear
realizations or very large dark matter N-body simulations, including
cosmological reionization, halo formation, baryonic acoustic oscillations, weak
lensing or non-Gaussian statistics. We discuss the structure, the accuracy,
known systematic effects and the scaling performance of the code and its
utilities, when applicable.Comment: 20 pages, 17 figures, added halo profiles, updated to match MNRAS
accepted versio
Gyrokinetic Large Eddy Simulations
The Large Eddy Simulation (LES) approach is adapted to the study of plasma
microturbulence in a fully three-dimensional gyrokinetic system. Ion
temperature gradient driven turbulence is studied with the {\sc GENE} code for
both a standard resolution and a reduced resolution with a model for the
sub-grid scale turbulence. A simple dissipative model for representing the
effect of the sub-grid scales on the resolved scales is proposed and tested.
Once calibrated, the model appears to be able to reproduce most of the features
of the free energy spectra for various values of the ion temperature gradient
Trans-SNARE interactions elicit Ca2+ efflux from the yeast vacuole lumen
Ca2+ transients trigger many SNARE-dependent membrane fusion events. The homotypic fusion of yeast vacuoles occurs after a release of lumenal Ca2+. Here, we show that trans-SNARE interactions promote the release of Ca2+ from the vacuole lumen. Ypt7p–GTP, the Sec1p/Munc18-protein Vps33p, and Rho GTPases, all of which function during docking, are required for Ca2+ release. Inhibitors of SNARE function prevent Ca2+ release. Recombinant Vam7p, a soluble Q-SNARE, stimulates Ca2+ release. Vacuoles lacking either of two complementary SNAREs, Vam3p or Nyv1p, fail to release Ca2+ upon tethering. Mixing these two vacuole populations together allows Vam3p and Nyv1p to interact in trans and rescues Ca2+ release. Sec17/18p promote sustained Ca2+ release by recycling SNAREs (and perhaps other limiting factors), but are not required at the release step itself. We conclude that trans-SNARE assembly events during docking promote Ca2+ release from the vacuole lumen
- …