3,963 research outputs found

    Application of trajectory optimization techniques to upper atmosphere sampling flights using the F-15 Eagle aircraft

    Get PDF
    Atmospheric sampling has been carried out by flights using an available high-performance supersonic aircraft. Altitude potential of an off-the-shelf F-15 aircraft is examined. It is shown that the standard F-15 has a maximum altitude capability in excess of 100,000 feet for routine flight operation by NASA personnel. This altitude is well in excess of the minimum altitudes which must be achieved for monitoring the possible growth of suspected aerosol contaminants

    A differential game solution to the Coplanar tail-chase aerial combat problem

    Get PDF
    Numerical results obtained in a simplified version of the one on one aerial combat problem are presented. The primary aim of the data is to specify the roles of pursuer and evader as functions of the relative geometry and of the significant physical parameters of the problem. Numerical results are given in a case in which the slower aircraft is more maneuverable than the faster aircraft. A third order dynamic model of the relative motion is described, for which the state variables are relative range, bearing, and heading. The ranges at termination are arbitary in the present version of the problem, so the weapon systems of both aircraft can be visualized as forward firing high velocity weapons, which must be aimed at the tail pipe of the evader. It was found that, for the great majority of the ralative geometries, each aircraft can evade the weapon system of the other

    Application of trajectory optimization techniques to upper atmosphere sampling flights using the F4-C Phantom aircraft

    Get PDF
    Altitude potential of an off-the-shelf F4-C aircraft is examined. It is shown that the standard F4-C has a maximum altitude capability in the region from 85000 to 95000 ft, depending on the minimum dynamic pressures deemed acceptable for adequate flight control. By using engine overspeed capability and by making use of prevailing winds in the stratosphere, it is suggested that the maximum altitude achievable by an F4-C should be in the vicinity of 95000 ft for routine flight operation. This altitude is well in excess of the minimum altitudes which must be achieved for monitoring the possible growth of suspected aerosol contaminants

    Application of differential game theory to role-determination in aerial combat

    Get PDF
    The development of criteria which specify the roles of pursuer and evader as functions of the relative geometry and of the important parameters of the problem are discussed. A reduced-order model of the relative motion is derived and discussed. In this model, the two aircraft move in the same plane at unequal but constant speeds, and with different maximum turn rates. The equations of relative motion are of third order, the dependent variables being the relative range, bearing, and heading of the two aircraft. Termination of the pursuit-evasion game is defined by either the heading-limited or the range-limited end condition. These are geometric conditions for which the evading aircraft is in front of the other, with the relative heading and relative range satisfying certain inequalities. Retrograde solutions to the equations of relative motion were used with the derived optimal terminal maneuvers to find where an assumed set of end conditions could have begun

    An investigation on the effect of second-order additional thickness distributions to the upper surface of an NACA 64-206 airfoil

    Get PDF
    An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of an NACA 64-206 airfoil. Additional thickness distributions employed were in the form of two second-order polynomial arcs which have a specified thickness at a given chordwise location. The forward arc disappears at the airfoil leading edge, the aft arc disappears at the airfoil trailing edge. At the juncture of the two arcs, x = x, continuity of slope is maintained. The effect of varying the maximum additional thickness and its chordwise location on airfoil lift coefficient, pitching moment, and pressure distribution was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic NACA 64-206 airfoil, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations

    Application of multivariable search techniques to the optimization of airfoils in a low speed nonlinear inviscid flow field

    Get PDF
    Multivariable search techniques are applied to a particular class of airfoil optimization problems. These are the maximization of lift and the minimization of disturbance pressure magnitude in an inviscid nonlinear flow field. A variety of multivariable search techniques contained in an existing nonlinear optimization code, AESOP, are applied to this design problem. These techniques include elementary single parameter perturbation methods, organized search such as steepest-descent, quadratic, and Davidon methods, randomized procedures, and a generalized search acceleration technique. Airfoil design variables are seven in number and define perturbations to the profile of an existing NACA airfoil. The relative efficiency of the techniques are compared. It is shown that elementary one parameter at a time and random techniques compare favorably with organized searches in the class of problems considered. It is also shown that significant reductions in disturbance pressure magnitude can be made while retaining reasonable lift coefficient values at low free stream Mach numbers

    An investigation on the effect of second-order additional thickness distributions to the upper surface of an NACA 64 sub 1-212 airfoil

    Get PDF
    An investigation was conducted on a CDC 7600 digital computer to determine the effects of additional thickness distributions to the upper surface of an NACA 64 sub 1 - 212 airfoil. Additional thickness distributions employed were in the form of two second-order polynomial arcs which have a specified thickness at a given chordwise location. The forward arc disappears at the airfoil leading edge, the aft arc disappears at the airfoil trailing edge. At the juncture of the two arcs, x = x, continuity of slope is maintained. The effect of varying the maximum additional thickness and its chordwise location on airfoil lift coefficient, pitching moment, and pressure distribution was investigated. Results were obtained at a Mach number of 0.2 with an angle-of-attack of 6 degrees on the basic NACA 64 sub 1 - 212 airfoil, and all calculations employ the full potential flow equations for two dimensional flow. The relaxation method of Jameson was employed for solution of the potential flow equations

    Electronic Scattering Effects in Europium-Based Iron Pnictides

    Get PDF
    In a comprehensive study, we investigate the electronic scattering effects in EuFe2_{2}(As1−x_{1-x}Px_{x})2_{2} by using Fourier-transform infrared spectroscopy. In spite of the fact that Eu2+^{2+} local moments order around TEu≈20T_\text{Eu} \approx 20\,K, the overall optical response is strikingly similar to the one of the well-known Ba-122 pnictides. The main difference lies within the suppression of the lower spin-density-wave gap feature. By analysing our spectra with a multi-component model, we find that the high-energy feature around 0.7\,eV -- often associated with Hund's rule coupling -- is highly sensitive to the spin-density-wave ordering, this further confirms its direct relationship to the dynamics of itinerant carriers. The same model is also used to investigate the in-plane anisotropy of magnetically detwinned EuFe2_{2}As2_{2} in the antiferromagnetically ordered state, yielding a higher Drude weight and lower scattering rate along the crystallographic aa-axis. Finally, we analyse the development of the room temperature spectra with isovalent phosphor substitution and highlight changes in the scattering rate of hole-like carriers induced by a Lifshitz transition

    First-principles investigation of 180-degree domain walls in BaTiO_3

    Full text link
    We present a first-principles study of 180-degree ferroelectric domain walls in tetragonal barium titanate. The theory is based on an effective Hamiltonian that has previously been determined from first-principles ultrasoft-pseudopotential calculations. Statistical properties are investigated using Monte Carlo simulations. We compute the domain-wall energy, free energy, and thickness, analyze the behavior of the ferroelectric order parameter in the interior of the domain wall, and study its spatial fluctuations. An abrupt reversal of the polarization is found, unlike the gradual rotation typical of the ferromagnetic case.Comment: Revtex (preprint style, 13 pages) + 3 postscript figures. A version in two-column article style with embedded figures is available at http://electron.rutgers.edu/~dhv/preprints/index.html#pad_wal
    • …
    corecore