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PREFACE

This report describes the theory and preliminary results
of a research study carried out in the period from April to July,
1975, under Contract NAS 2-8844, titled "Study of RPV and MX Sys-
tem Characteristics."

Mr. Michael Tauber was the Technical Monitor for the study,
which was done for the Advanced Concepts Branch of the Aeronautics
Division, NASA-Ames Research Center. The author thanks Dr. J. V.
Breakwell of Stanford University for providing helpful suggestions
used in Sections 4.2.5 and 4.2.6. Mr. D. S. Hague of Aerophysics

Research Corporation served as Project Leader for the study.
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APPLICATION OF DIFFERENTIAL GAME THEORY

‘TO ROLE-DETERMINATION IN AERIAL COMBAT

by A. W. Merz
Aerophysics Research Corporation

1.0 SUMMARY

This report describes the application of the theory of differ-
‘ential games to the one-on-one aerial combét problem. The purpose
of the study is the development of criteria which sﬁecify the roles
of pursuer and evader as functions of the relative geometry and of

the important parameters of the problem.

A reduced-order model of the relative motion is derived and
discussed. In this model, the two aircraft move in the same plane
at unequal but constant speeds, and with different maximum turn rates.
The equations of relative motion are of third order, the dependent
variables being the relative range, bearing and heading of the two
aircraft. Termination of the pursuit-evasion game is defined by
either the heading-limited or the range-limited end condition.
These are geometric conditions for which the evading aircraft is
in front of the other, with the relative heading and relative range

satisfying certain inequalities.

Retrogradé solutions to the equations of relative motion are
used with the derived optimal terminal maneuvers to find where an
assumed set of end conditions could have begun. End conditions
correspond to a near miss or to a collision, these being types of
trajectories which define the '"barrier". The barrier separates
rélative geometric conditions leading to capture from nearby rela-
tive conditions leading to escape, and its determination is of
primary importance in the role-determination problem. It is shown
that‘optimal maneuvers of both pursuef and evader take place at eith-
‘er maximum turn rate or at zero turn rate, and that the solution

typically involves two-part and three-part maneuvers for both aircraft.



In general, the barriers divide the state space of relative

initial conditions into three regions; namely:

1. Victory is guaranteed for aircraft A, regardless of

maneuvers by aircraft B.

2. Victory is guaranteed for aircraft B, regardless of

maneuvers by aircraft A,

3. Neither can win; i.e., a draw region exists in the.

space of initial conditions.

‘The contents of this report are limited to a description of the
theory and an illustration of representative results obtained
for typical numerical sets of parameters. The general problem
is highly nonlinear, and is expected to show a strong dependence
on the values assumed for the parameters. Later studies will
explore this dependence, in an effort to quantify the relative

importance of the various features of the problem.



2.0 INTRODUCTION

'A fundamental question in the one-on-one aerial combat
problem is the specification of roles. That is, which aircraft
should pursue and which should evade? The answer obviously
depends not only ﬁpon the relative geometry but also upon the
capabilities of the aircraft and their weapon systems. From the
point of &iew of differential‘game theory, these parameters alone
should imply the roles and the eventual outcome of an optimally-
played pursuit-evasion game. However, actual and simulated com-
bat engagements frequently start in a configuration for which both
pilots initially take the role of pursuer. One, and sometimes both
of them may later switch to an evasive strategy, unless the en-
counter leads to a "stand-off" condition. Such a stand-off con-
dition could arise when two equal aircraft are diametrically
opposite each other, describing their minimum turn circles in the

same direction.

On the other hand, the roles of pursuer and evader are
obvious in those geometric configurations not far removed from an
assumed end condition. Subtle changes in the initial geometry,
however, éan make the specification of rolésvless transparent, and
eventually a configuration is reached for which the roles are ob-

viously the reverse of the initial set, as shown in Figure 2.1.

B pursues A

?
%— - I " — — —
\ A pursues B

. | ,;  ’i.i" ;__-.
‘ A

Figure 2.1 Role Reversal in Aerial Combat



The more general problem is one for which no straight-
forward intuitive solution exists, and which is important for

the following reasons:

1. Optimal maneuver tactics are of great significance
to combat aircraft pilots, whether they are pursuing

or evading.

2. Relative capabilifies of combat aircraft can be found

in terms of speed, maneuverability andfweapon systems.

3. It may be feasible to incorporate optimal combat tac-
tics into the requirements of RPV autopilots and

Sensors.

4. The sensitivity of combat roles and maneuvers to
certain performance parameters may be very great, such
that much greater effort should be expended on these
parameters; e.g., maximum tﬁrn'rate at the expense of

vehicle weight.

In this report, the one-on-one combat problem is mathematl—
cally modelled as a dlfferentlal game[ ], in which the pursuit-:
eva51on roles are not glven a prlorl[ ]. The important performance
parameters are constant for both aircraft and the relative position
and heading are assumed known by both pilots.f The parameters
effectively define position in a set of "capture regions" for each
of the aircraft. These capture regions are combinations of relative
position (range aﬁd cone-angle) and relative heading (or ahgle off)
for which the roles are given, and for which the pursuer is guaran-
teed a win, no matter what maneuvers are used by the other aircraft.
A solution procedure for determining the capture region boundaries

will be developed in subsequent sections of this report.5



3.0 MATHEMATICAL MODELLING

Mathematical analysis of an aerial combat encounter
between two aircraft is an extremely difficult problem, which
can be approached in two ways: ’

1. Complex and accurate aircraft simulations can be used
~ with actual or simulated pilot control inputs, to
generate experimental and statistical results as to
"effective! combinations of aircraft, weapén systems

and pursuit-evasion maneuvers [5~10}.

2. Simplified mbdéls of aircraft dynamics can be coupled
with the theory of differential games to specify the
roles as functions of the relative geometry and the

optimal maneuvers associated with these roles.

These two methods focus on different features of the problem,
and both have advantages and shortcomings. The research effort to
~ date has been concentrated on the first approach* and a large
amount of experimental data has been accumulated. However, it is
difficult to drawygeneral conclusions from the data, because of the
large number of independent input parameters. Further, the experi-
mental data may deal with a specialized feature of the problem (e.g.,
a gunsight or thrust-vector control system) without first showing'how
important this aspect is to the problem solution. However, in any
case, the experimental results may be biased by the use of non-
optimal control laws. This tends to make suspect any general con-

clusions based on experiment.

*'A third method, which yields locally optimal solutions, applies
the optimization criteria to the full equations of motion, over a
© given tlme'interva1[11 12] This method required that the range

rate always be negative, Wthh meant that solutlons could not be
found for all initial conditions.



On the other hand, practically all the ppublished theoretical
differential game studies have utilized over-simplified or over-

specialized mathematical‘models[ls-lsl

~or have dealt with theoretical
[19,20] }

aspects of differential games which are irrelevant to

realistic pursuit-evasion problems.

For these reasons, it appears that detailed modelling?and
subsequent analysis of a portion of the aerial combat system should
be done only after it has been shown to have a major impact on the
system outcome. This can be demonstrated only by using simplified
dynamic models which include what seem to be the fundamental
features of the system. '

3.1 METHODS OF DEVELOPING TACTICS ‘

The first approach given above has the advantage of per-
'~mitting practical resulfs to be passed from experienced combat
pilots to other pilots and to aircraft designers. Unfortunately,
however, the mass of data accumulated in this experimental
approach discourages general quantitative conclusions, and it is
often impossible to know why a particular combat encounter (simu-
lated or otherwise) ended in favor of one pilot instead of the
other. Furthermore, the method is both inefficient and expensive,
partly because most of the effects being simulated are secondary
to the question of determining which pilot should pursue and which

should evade.

The second approach, on the other hand, can be criticized
a$ being too highly idealized with insufficient fidelity in the
aircraft maneuver dynamics, and with too little attention given to
tﬁe transient behavior of the pilots. Nevertheless, the analysis
of reduced-order systems in the past has had the effect of isolating
the significant péfameters,.and of peimitting a more organized

. development of improvements in a given system. For this reason, it



is felt that practiéal low-order versions of the aerial combat
problem can be analyzed and solved, in terms of parameters which

appear to be of fundamental importance.

In order to validate or to determine limits to this h9p04
thesis, it will be necessary to use results obtained from the
simplified model in a realistic simulation of the aerial combat
problem. For example, a simulated combat engagement between an
"optimally" guided RPV and a comparable aircraft flown by an ex-
perienced pilot or guided by approximate combat control laws can

demonstrate the value or limitations of the second approach.

3.2 ASSUMPTIONS IN MATHEMATICAL MODEL

All engineering work is based on the analysis of more or

less idealized equgtions:describing a ceitain aspect of the system

of interest. If the mathematical details of the study are done
correctly, the success and validity of such analyses depend on how
well the actual system corresponds to the idealized system. For
example, the low-speed small-disturbance stability characteristics of
airCréft can be quite accurately determined using linearized
equations written for a rigid aircraft. At higher dynamic pressures,
on the other hand, aeroelastic effects become significant, and the |
order and complexity of the equations describing the system increase
considerably. But such mathematical refinements in the system o
equations should be undertaken only éfter'a rather complete study

of the simpler equations. In many cases, of course, the higher-
ordered equations are never needed, because the aircraft is essentially

rigid for practical values of the dynamic pressures.



By analogy, the modelling of the one-on-one aerial combat
problem should start with the simplest realistic* dynamic equations
which can be used to describe the important features of the motion.
After the pursuit-evasion tactics have been found for the simplest
mathematical'model, refinements can be added to the descriptive
equations, and small changes in the results can normally be expected.
If the changés in the results are not "Small",'in the engineering
sense of the word, certain important assumptions have been violated.
In this case, either the mathematical model must be modified, or
the applicability of the results must be restricted to parameters
for which such changes gzg'smallf For this reason, it is always
good practice to emphasize the assumptions and conditions under
which a solution has been found. The reader can then judge for him-

self whether these conditions are reasonable. °

The velocities and maximum turn rates of the two aircraft are
assumed to be constant during the encounter, to avoid the use of
higher-ordered equations of relative motion. This is partiallyfjusti-
fied by observing that maximum normal accelerations due to 1lift are .
usually much larger than axial accelerations due to thrust and drag,
except for very high angle of attack configurations. A second justi-
fication arises in the analogous problem of developing maritime
collision avoidance maneuvers. It is found[21’22] that ship velocities
in a hard turn can be reduced by 30% to 50% from their initial values.
Nevertheless, the optimal ship turn maneuvers are nearly insensitive
to this change in velocity, and excellent results have been obtained
by using maneuvers based on the initial velocities of the ships. Of
course, any results are perfectly applicable to turn maneuvers which
maintain the velocity (or energy) of the aircraft. But, if thergizggf

-

tion of a turn maneuver can be shown to be nearly independent of the

.

Instgntaneous changes in speed or heading require infinite accel-
erations,; and are examples of the use of unrealistic dynamic

'equations[13'16];:




subsequent speed loss, it is irrelevant that the speed is reduced
during the turn. In other words, the fundamental purpése of the pre-
sent study is the development of pursuit-evasion maneuvers, as functions
of the relative position and velocity, and not to simulate the transient

behavior of the aircraft during these maneuvers.

In the development of pursuit-evasion maneuvers, it will be
found useful, if not necessary, to work in terms of retrograde (''back-
ward") time. This is the time-to-go until the end of the combat
engagement, which is defined geometrically, in terms of the relative
position and heading of the two aircraft. When a suitably simplified

model of the aerial combat problem is solved in this way[z’lgl

, it is
usually found that the chase is brief and the trajéctories rather
simple. This provides retroactive ‘justification for certain of the
assumptions necessary to the solution. That is, for example, the

entire combat time may be so short that the speeds cannot be appreciably

altered, so that they can reasonably be considered as constants,

The. important kinematic characteristics of two aircraft in
éombat are the vectors describing the relative position and the rela-
tive velocity. These two vectors define a.plane in which the relative
motion occurs, and it is intuitively clear that both aircraft should
apply fheir control accelerations in this plane. This makes the
optimal use of the accelerations that each pilot has at his disposal,‘
and if the individual aircraft velocities are also in this plane, an
initially planar dynamics problem should remain pianar. In fact,
experienced combat pilots do attempt to orient their 1ift vector in
the plane of the relative position and velocity vectors. This tends
to lead to the development of an encounter lying within a twisting

plane in three-dimensional space.



”

3.3 EQUATIONS OF RELATIVE MOTION

:Under the simplifying assumptions discussed above, the rela-
tive motion is described by three equations, in which the speeds and

maximum turn rates are constant parameters. The coordinate system is
chosen to be fixed to the faster aircraft A , and in this axis

system the relative position (x,y) and the relative heading (H)

of the slower aircraft B satisfy the equations

b’ =’ - wA y + VB §1n H
y = = Vyt ey XV cos'H (3.1)
H= - Wy + Wy
where the turn rates are bounded; i.e., Imil = W , 1= A,B;
' max

As shown in Figure 3.1, the relative motion caﬁ be expressed
in polar coordinates as well, in terms of the cone-angle (¢), the
angle-off (@) and the range (r). The equations of relative motion

in these coordinates are:

r= Vp cos@ - VA,c_osrl) |
d):-,coAf (VB sing + VA sin¢g ) /r (3.2)
s

Wy - (VB-sino + VA sin qb')- /r

The two sets of coordinates are related by

X=rsing ,y=rcosd ,H= ¢+¢. ’ (3.3)

10



The differential equations of motion in Eq.(3.1) are seen to
be linear, whenevpr W, and wp are constant, with solutions in
terms of trigonometric functions. This is because the aircraft are
then ‘describing simple circular arc paths in fixed coordinates.

The equations are solved by first determining the heading as a
linear function of time, and by then solving the position
equations by standard methods. The more symﬁetrical polar
équations in (3.2), however, can be solved only in terms of arc
tangent functions. These equations show how the angles ¢ and 6
depend upon both the aircraft turn rates and the.kinema?ics of

the problem. When the range is large, ¢ = - ® and 6 =

(O
Bqt otherwise, highly nonlinear effects can predominate. Thug,

at large ranges A can control the cone angle, but B can con-
trol the angle-off! Since from symmetry the converse is true, air-
craft at ah iniﬁially large distance from each'other will often

. null the steering erforé and turn the initial encounter into a
head-on pass with iittle lateral offset. However, short-range

maneuvers are far more complex.

Figure 3.1 Relative kotion Coordinates

11



" The solutions to Eq.(3.1) are given here in terms of the
final (terminal) conZitions (xf, Ygs Hf). For constant values
of the two turn rates, both aircraft describe circular arcs in
real‘space, and B's position relative to A 1is given by the

following functions of the retrograde time, 7:

]
]

—wA(l - cosST 4y sinT7) + VB/wB [cos(Hf +wA-r) - cos H]

y=ygcost + (1 - @, xf) sint - VB/“’B [sin(Hf t o, T) - sin H]

H=H,.+ (w

£ A""B)"’lwilgwi ,i=A, 8 (3.4

max

Here, the velocity of the faster aircraft has been normal-
ized to VA = 1, and the waximum turn rate of this aircraft is
normalizerdy to w, = 1., This means that the unit of distance

‘ max
in the normalized equations is the turn radius of aircraft A.

For brevity, the maximum turn rate of the slower aircraft is

written as wp = @ , which will be assumed greater than 1,
max

‘while B's velocity is VB < 1. The slower aircraft (B) is there-

fore assumed to be more maneuverable than the faster aircraft (A).

This will be the case, for example, if the turns are made at the

same load factor, so that the product of speed and maximum turn

rate is constant for both aircraft.

12



4.0 PURSUIT-EVASION MANEUVER DETERMINATION

The equations of coplanar relative motion derived in the
previous section provide a dynamic model of the aerial combat
problém, in terms of a small number of parameters and dynamic
variables. From the points of view of the aircraft pilots, the
solution to the combat problem should give the roles and the
maneuvers of both pilots as functions of the relative geometry.
This is also the point of view taken here where, however, it is
necessary to investigate the more subtle dependence of the
optimal maneuvers on the aircraft velocities and maximum turn

rates.

4.1 TERMINAL CONDITIONS

Termination in an aerial combat encounter can be defined
in many different ways, all of which mean that the differential
game has ended. A conflict exists, however, between the complex
limitations of current air to air weapon systems and the require-
ment of relative simplicity in the mathematical models of these
systems. The terminal conditions are actually functions of many
indépendent physical quantities, but for the purposes of this
report, they must be defined in much simpler terms, in order to

be useful from the mathematical point of view.

Many earlier mathematical versions of the aerial combat
problem[s’ls-lgl have used the range alone as a termination cri-
terion. This is a natural mathematical choice, since the capture
circle (or sphere) is an extremely simple geometric shape free of
the "corners'" or '"edges" that introduce complications when other
criteria are used. This cannot be used, of course, when both air-
craft can pursue, and it is necessary to specify a set of terminal

conditions which are both realistic and yet simple enough to be
modelled. ' :

13



 One physically appealing termination criterion can be
described as the tail-chase or heading-limited condition, in
which the evader is ahead of the pursuer, with a nearly parallel
heading. This is shown in Figure 4.1 for both A pursuing B
and B pursuing A. In both cases, A's velocity is aligneé
with the y-axis, while B's velocity is oriented at the clockwise

(positive) angle, Hf.

X
y
A
Aés A X '
a) A pursues, B evades b) B pursues, A evades

Xe = 0 Xe = yf tan Hf
. >
Yf"o B ; )’f_<. 0
,l,HflS A IHfI < Hy

. Figure 4.1 Heading-Limited Terminal Conditions

in A's.Axis System

14



The angular parameters HA and HB are specified a priori,
and are expected to have values of approximately 10°-30°. These
would actually depend on the details of the gun-sight or missile
guidance system used by the aircraft. The range at termination

can also be an important factor in the realistic modelling of the

- aerial combat problem, but in the heading-limited case, the final
range is considered as irrelevant. This is consistent with the
assumption that the forward-firing weapons of both aircraft have

- "long-range' guidance systems which can follow any subsequent
evasive maneuvers of the target. A more detailed model of the
problem would also include the final "angle-off'" or bearing as a
parameter; instead of requiring that the evader be exactly ahead

of the pursuer at the end of the chase. In this case, too, it is
felt that sufficient complexity already exists in the problem
statement and that any generalization of this kind can be postponed

for the present.

A second physically motivated termination criterion is
defined with either airplane in front of the other, with arbitrary
relative heading, but within a given range[z]. These terminal
conditions are illustrated in Figure 4.2, The range-limited case
is also briefly examined in this report, and the associated
maneuvers and capture regions are found for a particular numerical

set of parameters.

4.2 OPTIMIZATION CRITERIA AND NECESSARY CONDITIONS

The principal results being sought in this analysis are the
sets of initial conditions for which a win is guaranteed for the
pursuer, regardless of the maneuvers used by the evader. The pur?
suer, of course, can be either aircraft A or B, and it is ex-

pected that the "capture regions'" of A and B will intersect on

15



a) A pursues, B evades b) B pursues, A evades
= 0< < : =
xg =0, O“Yf“lA Xg=Y g tan H, TSl

Figure 4.2 Range-Limited Terminal Conditions

in A's Axis System

those §urfaces which separate the two regions. That is, the

~ state space, as describe& by the vector (x, vy, H), will be com-
posed of ‘at most three regions, corresponding to wins byr A or
B, and to a '"'stand-off" or escape by the faster aircraft. For
other values of the parameters (e.g., if the faéter aircraft is
also more maneuverable) the third or "escape' region may be ab-
sent, and one or the other aircraft must win for all initial
conditions[z]. ‘

The capture region of either aircraft is determined by a
consideration of the family of "barrier"[ll trajectories. This .
family of trajectories forms a "semi-permeable surface', which
ﬁrevents the state from crossing the surface as long as both éiré
éraft maneuver optimally in its'neighbdrhood. Albng the paths
on this surface, the pufsuit-evasion roles are known, and the

trajectories end in a "near-miss" or simultaneous kill configuration.



(For the weapon models used here, a simultaneous kill is actually
a collision with near-parallel headings.) The reasoning is that

a small displacement normal to the barrier means a clear win or a
Clear'escape by the pursuer or evader, respectively. Therefore,
the pursuer's semi-permeable surface locally divides the state
space into capture and escape regions, for the assumed roles.

But, a different set of barrier trajectories exists for the
‘reversed-role‘aésumption and when the two barriers intersect, one
or the other hust'be discontinued. An exception occurs on the
“collision'" barrier, which is itself a role-reversal locus. These

notions are illustrated in Figure 4.3.

near-miss.
barrier —

collision barrier

A pursues B
and wins

near-miss
. barrier

Draw

B pursues A .
2 P S (A escapes B)

and wins

Figure 4.3 Conceptual Division of State Space

The pursuit-evasion game can be given a positive value if
B wins, and a negatiVe‘Valﬁe if A wins, where "winning" is de-
fined for A and B by a terminal configuration in;favbr of
either, as shown in Figures 4.1 and 4.2. The value of the game

for trajectofies following the barrier is therefore zero, and this -

17



value function has a total time derivative along the optimal
trajectories which is also zero. This is the "Main Equation"
of Isaacs[ll, which takes the following form,

‘min max ;xxx *Ayy-+_‘\H H]=0
Y “B

Substituting from Eq.(s.l'} with VA =1,
min max [Ax(- W, Y - VB sin HA)

Wy “p

' (4.1)
+ Ay(—l fwA X + VB cos HA)

+ ).H(- Wy +wB)] =0

4.2.1 ADJOINT EQUATIONS AND OPTIMAL MANEUVERS

The adjoint vector, VA= ( Ay "y’ )\H) consists of partial
derivatives of the payoff function, for which a saddle-point solution
is sought. These variables obey a set of linear differential equa-
tions, which are found by differentiating Eq.(4.1) with respect to
time: )

> [

n

4

e
>

>

(4.2)

>
1]

H VB (Ay,sm H‘- _,Ax cos H)

18



The retrograde solutions to these equations are expressed in terms
of the final values of the adjoints and the time-to-go, 7:

A= A COST + A sinw, 7
Xe -yf A

)\y = - )«xf smwA‘r+ )«yf CoS T (4.3)

AH = )«Hf + VB/“’B [Axf(sin He - sin(H- wpT))

+ Ayf(cos Hf - cos(Hf-wBT))]

It will be shown that the terminal values of tile adjoints are

derivable from the geometric conditions at the final time, when
T = 0. '

The optimization procedure implied in Eq.(4.1) gives the
turn-rate controls of both pilots as functions of the current
values of the state and adjoint variables;

max
Sp= ALY - ‘}\<yx+ Ay
and wp = 0y sgn Sp = @ sgn Sy
max ‘ (4.4)
Sp = Ay |

where the switch functions of A and B are denoted S, and Sy

respectively.



The optimal maneuvers for both aircraft are therefore hard
turns to left or right unless the switch function is identically
zero. In this case, it can be shown that the corresponding
optimal maneuver is a 'dash' or straight path, for which the turn
rate is zero. Thus, regardless of the relative geometry or per=
~ formance characteristics of the aircraft,'only nine maneuver pairs
(3 maneuvers for each of 2 aircraft) are candidates for optimal con-‘

trols in this model of the aerial combat problem.

4.2.2 END CONDITIONS

The optimal maneuvers can be computed only when ihe switch
fﬁnctions are known, which requires that fhe adjoints be known.
Boundary conditions on the adjoints, however, are known only at
the time of termination, when the geometry correspoqu to the
'hear-miss" or "collision'" end condition. Further analysis
therefore requires consideration of the relative motion which '
precedes the barrier end conditions, examples of which.are shown

in Figures 4.1 and 4.2.

The barrier trajectories which precede these end conditions

are of two general types:

1. "Near miss' trajectories for which the evader contacts

tangentially the edge of the pursuer's capture region,

2. "Collision'" trajectories, for which "wins" occur

simultaneously for both aircraft.

These trajectorles are representative solutions to the game of
Elggﬁ ], which separate 'capture" from “escape", and which will be
illustrated for the tall chase end condition in the following
paragraphs.
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Parameters HA and HB were defined in Figure 4.1, and
are shown in a perspective drawing of the two capture regions
in Figure 4.4. These relative heading angles in the tail-
chase end condition bound a two-dimensional region in the
felatiye space on which capture must occur, and it is seen
that the near-miss trajectories contact the capture regions
either along the edges or tangentially along the surfaces.
"The collision trajectories occur at x = y = 0, along a line
segment which is common to both capture regions.

Trajectories‘in this 3-space (x, y, H) are continuous
'curved paths obeylng the equatlons of relative motion. That
1s, the relative "velocity" has components x, y, and H, and
the trajectories are smooth except where A or B switch

turn rates.

/\f e+— A captures B_(.xf =0, yf>0)

A neaM
wins

collision (xf =Ye= 0)

B captures A 7
B nearly (xf =Yg tan Hf’ yf<0)
"wins :

, Flgure 4.4 Termlnal TraJectorles on the Barrier
for the Ta11 Chase End Condition

«
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The adjoint vector (A)U A "AH) is normal to this

relative velocity, according to Zhe main equation. Conse-
quently, a graphical interpretation can be given to this
vector at the time of a near-miss or collision. The simplest
such illustration is related to the trajectory "Tl" of
Figure 4.4. At termination of this barrier trajectory,

X = x = 0, and the adjoint vector is*

Va= (Ax,x = (1, 0, 0),

s Ap)
y’ "H tf

because first order changes in béth y and H have no
effect on the outcome of the local game. This implies that

A's switch function is 'S, = A_ ¥y
Af £ f

fore coA = +1 (A turns right, toward B). To determine B's

terminal control, it is noted that although SB = AH =0,

. f f

its retrograde derivative (d/d7) is given by Eq.(4.2) as

© . ‘ .

SB = - AH = VB Axf cos Hf > 0, and hence coB = +w (B also

turns right, or toward the outward normal of the terminal

= > -
X yf 0, and there

surface). Both of these maneuvers are intuitively reasonable,
and can be sketched as circular arcs in realistic space, as

in Figure 4.5.

* The magnitude of the adjoint vector in a game of kind can be
set equal to unity. ' ' '
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Figure 4.5 Near Miss Trajectories

The state-space locus on which these trajectories end is

then found through the tangential motion condition using W, = 1,

-

xf=—yf+ VBsmezo » O Y = vBsme,where
0< Hfs Hy, . When the near miss occurs at the limit heading,

Hf = HA , @ more complex analysis is required to define the
“adjoint vector. As shown in Figure 4.6, the vector must be normal
to the line H = HA s x=0, and it therefore has no y-component.

The vector is then written as
VA""(COSB ,O,Sinﬂ),

where the angle B is obtained from the main equation; i.e.,
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NG " /

/ i
H

Figure 4.6 Near Miss Trajectory, Hf = HA

)\xx+ )\‘/y+ )\HH=0,

or .
“W, Ye*+ @p sin HA
tan 8 = — (4.5)
Wy~ @B
Bec‘agse Hf = HA , B will be turning hard right in an
effort to increase Hf . This means that sinf8 > 0 , and Wp = ©.

The turn direction of A at this time is either right or left,

according to the following special subcases, which can be easily

derived using Eq. (4.5).
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—yf + VB sin HA

a) o, = +1 if ny(VB/w) sin H, , tan 8

A -w + 1
. . Ye - VB sin HA
b) Y +1 if nyVB sin HA , tan B =
. w-1
X . Yg + Vg sin Hy
c) W, = -1 if yfz(VB/m) sin HA , tan g8 =

~w -1

The collision end condition is analeed in the same way,
by assuming turn directions for A and B and then determining
the terminal conditions, if any, for which such maneuvers are
.optimal. For example, if both are turn"mg right at collision,
the main equation is expressed with x_. = =\, =0, or

A X+ >‘y y + }‘H H = sin g (VB sin Hf) + cosB (-1 + V; cos Hf) =0

The terminal value of the angular adjoint is zero, since a
first-order change in terminal heading is not to the advantage
of either aircraft. Hence, the terminal adjoint vector is

oriented by the angle with the tangent

1 -VB cos Hf

tan g = (4.6)

VB sin Hf

- The retrograde derivatives. of both switch functions must be
positive, since both A and B are turning right by assumption;
i.e.,

°
Sp= A, 20

o .
Sg = Vg (A, cos He - )‘y sin Hg)20

f £

Here again the superscript circle is used to abbreviate d( )/d=T .
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These inequalities imply that sing > 0 , and that

* - i = - >
),xf cos Hf Ayf sin Hf cos Hf VB_ 0

It is also clear on physical grounds that, since A is mini-

mizing, )\y = cos B £ 0, which means that HfS 0. It is
f

therefore concluded that A and B turn right before collision

only for terminal headings in the range -c:os'lvB < l{fS 0 (assuming

cos-IVBS. HB). The paths in real space are sketched in Figure 4.7,

Hf’\‘f*
-

Figure 4.7 Collision Following Maneuvers Ay By

and it is seen that if either aircraft discontinues turning, it
will pass ahead of the other with a relative heading less than HB.
This would mean an uncontested win for the aircraft which maintains

its hard turn and, according to the problem specification, the

26



collision therefore represents the better of two '"bad' outcomes

for both aircraft A and B.

- Depending on the relative orientation and turn maneuvers

of the aircraft, 16 different terminal configurations are possible

in this model of the problem, of which three have just been discussed.
The other cases are listed in Table I, where it is seen that more
stringent inequalities can occur in the applicable range of the
independent variable. These inequalities can be derived by the
requirement that neither switch function changes sign while the
heading changes (retrogr‘essively) from H_. to H. Further dis-

f
cussion of these maneuvers is postponed to Section 5.0.

4.2.3 SWITCH CONDITIONS

The retrograde integration of the state and adjoint equations
allows the switch functions of both A and B to be written in
terms of the terminal values of state and adjoint vectors, and

the associated turn rates W, and wg. In these expressions, the

independent variable is the 'time-to-go'" until the near miss or

collision occurs. - It is denoted by the symbol 7 =t,. -t ,

£
where tf is the time at which the near miss or collision occurs.

By combining the results presented in Eqs. (3.4) and (4.3),

the switch functions for aircraft A and B can be expressed in

retrograde time as

S =X (yf+51n'r) -}\yf [xf-uA (1 - cos 7)] +)\Hf
Vy (4.7)

" Sg = Ay = [)\X (sin Hg -sin(Hge- wpm))+ }‘y (cost-cos(Hf- wB'r))]

f B £ f

where w, = segn S, =‘:!:1 and wp ‘= ¢.) s Sy = 2w .
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TABLE I

OPTIMAL PURSUIT-EVASION TERMINAL MANEUVERS

(Heading-Limited End Condition)

Terminal State Terminal Adjoint
Case| Turns. (x H,) O 5 Ay 5 Ay )
: £ Vg U xf’ yf’ Hf—
1 ARBR (0, o0, Hf) (sin B8, cosf3 .
—cos v <H_<0 ) 1-Vgcos He
B £ tan g3 = V.sin H
B f
2 ARBL (0, O, Hf) (sinf8, cosf ,
-1 1-V_ cos H
H.<H.<€-
HB"Hf‘ cos VB tang = B £
VB§1n Hf
3 ARBR (o, VBsin Hf, Hf) (1, o0, O
<
O_HfSHA
4 ARBR (o, Ygr HA) (cosB, 0, sinf3)
V_ sin H,-y
B AE
OSstyl* ‘tanf=
l-w
. -V _sin H, +y
<
VBsm HA_yf tang = B Af
-1 +w
5 ALBR (o, Ygs HA) (cosf3, 0, sinf3)
Y. + V_sin H
£ B A
* -
Y ** <y, tanf =
. : -l ~w
ALBL (o, 0, Hf) (sinf8; cosf3, Q)
-1 +V_ cos H
X . B £
0<H_< cos™ 'V tanf = )
f B . =V.sin H
B f
A Bp (0, 0, H) (sinB, cosB, 0)
, -1 + V_cos H
-cos-IV <H.<H ~tanf3 = B £
B™ £~ A .
—VBsm Hf
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Table I

(continued)

Terminal State

Terminal Adjoint

Case | Turns
(xgs ¥er Hp) (A, 5 Ay s Ay )
£ 7 °f xe' Ty Hf
8 ALBL (0, VBsm Hf, Hf) (-1, 0, 0)
“H<H.<
HA.. Hf_O ;
9 ALBL (0, Ygs -HA) (cos B, 0,. sinfg)
VBsm HA,— Ye
Yesyy ¥ tanf = — -
f=7"1 1+
-V_sin H, +y
. B A’f
y.2V_sin H tangB = = -
f='B A 1 -0
10 ARBL (o, Yer -HA) (cosB, O, sinﬁ)
-y .~V_sin H
. f B A
ny(VB/a))sul HA tan g =
]l +@
. 2 . . .
11 BLAL (-sin Hf/w,-sm chqs .Hf/w,Hf) (-cos Hf,sm Hf,-sm Hf/_a))
<
OS.Hf_. HB
12 | BIA (ygtan Hy, yo, Hp) (gosﬁcos’HW -cosBsinty, sing)
‘ . -sin HB-yf/cos HB
-sin HBco§ HB/w SnyO tan g8 = -
- ~wt+ 1
sin HB + yf/'c‘os HB
Y < -sin HBcos HB tanf = v
; , w- 1
13 BRAL (yftan HB, Yes HB) | (cosﬁcquB, -cosﬁsinHB, sinf3)
: ’ -sin HB—y’f/cos HB
yfg -sin HBcos HB tanf =
co w+ 1
i a2 i ‘ : . P ‘
14 BRAR (sin Hf/co ,-smecost/w ,Hf), (cosf Hf, ~sin Hf, -sin Hf/w)

-H.<H.X "
HB__Hf_O
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Table 1

(continued)

Terminal State

‘Terminal Adjoint

- Case | Turns
(xz5 Yoo He) (A, s A, 5 Ay )
b L A xe' Ty Hf
15 BRAR" (-yf tan HB’ Y —HB) (cosfB cosHB, cosf smHB,—sinﬂ)
‘ -sinH, - yf/cosHB
' -sin ﬂBcos HB/w Syg<0 tang = R
, , sinHB + yf/cosHB
y;fs-sin HBcos HB tanf = -
J ~w+ 1
16} BLAR’ (—yf tan HB’ Ygr —HB)' (cosB Cc_’SHB’ cosf sinHB,-sinﬁ)
: -sinHy - yf/cosHB
yf_<_-sm Hpcos HB tang =
-w -1
* 1 . . A
Yy = a[VB sin HA - (w -l)sm( )]
** oy = Yv_sin'H +1)si ( '
Yy = —‘J[Bsm AT (w- )sin ]

' For specific terminal ranges, singular arcs for both A and

B can precede the maneuvers given in cases 12 and 15,
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Singular arcs cannot occur just prior to termination, because
this would imply

‘o

Sa= MY 7 Ay X Ay =S k=0

" or ' (4.8)
-}
Sg = A}i= Sp = Vg (A, cos H - hy sin H) = 0

Since neither of these conditions can hold at t. , it follows
that both A and B must be turning just prior to termination

of the near miss or collision maneuvers.

Because the backwards trajectories are most easily parame-
trized at specified (constant) values of heading, H, the solution

to the heading equation (using the appropriate contrbls) is found
as '

H=Hf+(wA~ wB)'T (4.9)

This expression gives the time-to-go, 7 , when H and Hf are
known, and therefore both switch functions can be calculated to
assure that neither has changed sign during the retrograde trajec-

tory of interest.

- More generally, when both state and adjoints are known at tfi
the times (if any) at which SA and SB equal zero can be derived in
terms of trigonometric arc-functions. For example, the representa-
tive case 12 from Table I éan be‘chosen (because the less maneuverable
aircraft never switches while pursuing),and for y’fg- sin HB cos HB,

with both A and B turning left, the switch functions are
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S, = w(sinHB+yf/cos HB) - (w-1) sin (HB-T) .

(4.10)

“"l) sinwT

SB=s1nHB+yf/cosHB+VB ps

When equated to zero, these can be solved for the retrograde-switch
times,

-w(sin H, + y./cos H))
Ty = Hg * sin'l[ B _f B ]

w —‘1

(4.11)

. -w(sin H, + y_/cos H))
s o1 sin-1[ i B B ]
w Uy (w- 1)

Since the independent variable here is byf, it follows that
no switch occurs if the argument of the arcsin function exceeds 1 in

magnitude; i.e., neither switches if the terminal range is large enough.

4.2.4 SINGULAR ARC CONDITIONS

It is possible for a singular arc to occur in the optimal
path of either A or B. The necessafy conditions for a singular
arc in the retrograde path are that the switch function and its |
derivative be simultaneously zero; i.e.,

(]

}SA('r)

it
(=]

S, (7)

or . . | . (4.12)
Sp (7) =85 (7) =

|
o

As an example, we continue the study of the terminal condi-
tions associated with case 12 of Table I, for which Xe = Vg tan HB’
and Yg < - sin Hp cos Hp.
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The switch functiohs fgr tﬁié iefﬁiﬂél condition have ‘been
derived in Eq.(4.10), and the derivatives are zero at the retrograde
tiﬁes' L HB +7/2, TR = /2w . When these times are equated
‘to the expressions in Eq.(4.11), it is seen that a singular arc
can occur for A when

Yg = yfA = -COS HB(sin HB + (w- 1/w)

or for B when

Ye = Vg

. = -COS HB(51n HB + VB(a)- 1) /w) (4.13)

Both of these arcs can be preceded by either left or right turns,
as shown in Figure 4.8. It is emphasized that these paths are only
candidates for singular arcs, and that the complete solution may
not include either of them. '

a) Singular Arc b) Singular Arc

for A for B

‘Figure 4.8 Scale Drawings of Singular Arcs

= = =- °
for VB = .9, wp 1.5, HB 40
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Case 13, for which the maneuvers are BR AL’ can also give

rise to singular arcs. The corresponding retrograde times are

TA ™ HB + mT/2

and

g = 37/2w ,

while the terminal values of the independent position variable

are

yfA = - cos Hy (sin Hy + (w+1)/w),
and S S (4.14)

ny = - cOs HB (sin HB + VB (w+l)/w)

A}

4.2.5 SWiTCH‘CONJUGATE TEST CONDITIONS

When a switch occurs in a retrograde trajectory, it is
necessary that the corresponding switch surface divide the state
spéce into 2 locally separate regions. This is ;llustrated for a
twb—dimensional state in Figure 4.9. The parentheﬁic.labels in-
the Figure correspond to "before" (-) and "after" (+) the switch
line is encountered. In case (a), the switch conjugate condition
is satisfied. In case (b), the test fails since the state space

is not divided into regions corresponding to pre- and post-switching.

When the switch conjugate test is failed, it is implied that
the retrograde pathsfcannot extend back to the switchisﬁrface, and
must be interrupted by some other phenomenon or condition. This is
suggested by the dashed line in Figure 4.9, which might represent a

[13,18]

-M"switch envelope" s a dlspersal 11ne[1 2], or other cond1t1on,
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switch

switch line -

line

Other conditions
invalidate paths

above this line

)

(+) |
(a) Test Passed (b) Test Failed

Figure 4.9 Switch Conjugate Testf(z-dimensioﬁal)

derivable from other considerations. Otherwise, as noted in
(b) of Figure 4.9, contradictions arise as to the controls that
are optimal prior to the switch line.

For the third-order system equations describing the aerial
combat problem, the switch conjugate test is more difficult to

apply. The vector state is r = [x, y, H}, and the switch func-
tions have been derived as

WA Ty Ty

and
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A =0 or SB

. . ~
described in terms of a vector normal to the surface, n.

= 0) is
This

normal is found by calculating partial derivatives along the retro-

A two-dimensional surface (e.g., S

grade trajectory evaluated at the switch time,

The retrograde state is expressed for the nzar-miss end
condition in terms of the three parameters (yf, Hf,r), since
The switch

Xg = 0 (A pursues) or Xeg = £y, tan Hf (B pursues).

time 7= TS is eliminated by solving the switch functions for

"~ the time Tgs i.e.,
SA (yf, Hf, rs) =0 or SB (yf, Hf, rs) = 0,
This implies a parametric expression for the two-dimensional
switch surface, ' '
r=1 (e HY -

Now, the vector normal to the switch surface is given by

the cross-product

where the scalar components of the normal are

S 8y OH oy oH
 x: ayf aHf ?Hf ayf
‘n;=‘aH»ax _ aH ax
v oygoHg o olgovg

. ex 8y _ 8x a8y
"H T 3y oH, 5H

£9¢

36



The switch conjugate test then consists of an evaluation
of the dot product

"N .- .- -
T =nN_X +n +n, H
r % y y H s

' A . . .
which must be positive if the vector n 1is in the direction of
.+
T . .

The test is carried out by first computing numerical values
of the partial derivatives in 2, at the time Tg+ These vector
components are then muitiplied by the relative velocity components
béfore (—j and after (+) the switch surface is encountered. Since

. . + = s .
75 implies r =1 , the velocities are different only because

wA or wp has switched across the surface SA = 0 or SB =0,
respectively. '
4.2.6 AN ADDITIONAL NECESSARY CONDITION

For near-miss maneuvers that end at Hf = % HA or * HB, an

additional necessary condition éan be formulated. This condition
sﬁould be examined because it can sometimes reject a terminal’
maneuver combination that might appear plausible by other considera-
tions.

When aircraft B is pursuing,a local differential game can

be defined at the time when Hf = Hg, and when x,. = Yg tan H In

£ B’
this near miss configuration, the relative angular heading is the
payoff which B wants to minimize and A to maximize. Therefore, in

this local differential game an incremental payoff is
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oA = Ax8xf + AySyf_+ AHSHf (4.15)

where

Ax =._cos B cos HB, }‘y = -cosg sin HB’_ '\H = sing,

Since 8}’f = 0 and 8xf =Yg 'o‘Hf sec2HB, the adjoint orientation
angle B must satisfy

{22, S sing + y¢ cos B/ cos HBSO. - (4.16)

£

[~2]

On the other hand, the main equation yields the min-max con-
‘dition on this angle,

sin H, -w, y. / cos H
tan g = B _A'S . B (4.17)

“y " “p

where

e
i

A sgn( sing + Y¢ cos B/ cos HB)

g
i

B wsgn( sin g ),

It can be seen that that the necessary condition in Eq. (4.16)

means that Wy = - 1, and it is necessary to consider only the

two maneuver pairs, wB = +®@ . That is, if the requirement of

Eq. (4.16) is not imposed on the maneuvers, the terminal controls

W = -w, = 1 (B left and A right, or BL AR in abbreviated

B “A

form) are apparently optimal for

Yg<- sin Hy cos HB/w . The
pair B’i{ Ay is found to be optimal only in the range Yg<-sin Hp cos Hg,

while EL AL is optimal in the two negative intervals,

- sin HB cos HB/w 5yf50, and Y < ‘—'sm HB cos HB.
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5.0 NUMERICAL EXAMPLES OF ROLE-DETERMINATION

Preliminary results have been obtained for representative
sets of aircraft parameters. In the examples treated, the faster
aircraft, A, has a smaller maximum turn rate than aircraft B, and
it is known that significant qualitative changes in the capture re-
gions will occur if A is both faster and more maneuverable than B,
It is to be emphasized that the results shown here are subject to
check by results obtained at other values of the relative heading.
That is, until the barrier solution has been found at all values
of the relative heading (thus filling the state-space), one cannot
be certain of results found at any value of the relative heading,
since they may be over-ridden by conclusions found to be needed

elsevwhere.

Capture boundary results will now be shown graphically for each

of two different definitions of capture. These definitions are:

1. The evader is directly ahead of the pursuer with the
velocities nearly parallel. That is, the relative head-
ing is within a given interval of zero and the relative
range is arbitrary, at termination. This is the "heading-

limited" criterion analyzed in the body of this report.

2. The evader is directly ahead of the pursuer, but within
a given range, while the relative heading is arbitrary at
termination. This criterion is an extension of the game

studied in Ref. 2, for other values of the parameters.
The first of these is the '"tail-chase" configuration illustrated

in Figure 4.1, and the second end condition is illustrated for repre-

sentative parameters in Figure 4.2.
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$.1 HEADING-LIMITED END CONDITION

The aircraft parameters chosen for the computations are
VB = .9,0p =1.5, while the speed and turn rate of the faster
X
aircraft are both unity. The cone angles illustrated in Figure

4.1 are given the values H, = 30° and Hp = 40°.

Preliminary results have been found for two values of the
relative heading, and these have required the use of several two-
part maneuver combinations. The capture boundaries for both
aircraft are shown at the relative headings of 0° and 15° in
Figures 5.1(a) and 5.1(b), where the subscript notation of Section
3.2 has been used. These barrier contours are associated with all
of the end conditions discussed in Section 4.2.2. It is noted
that the more maneuverable aircraft B has a much larger capture
region than A, because of the end condition imposed. That is, the

heading variable can be controlled by B, because w :>wA, and conse-

B
quently if the initial heading is outside the interval -H, to H

A A’
B can prevent its subsequent reduction to this interval, regardless
of the maneuvers chosen by A. The results shown here indicate that
a large '"draw' region exists for these parameters, for which A can

prevent capture by B, regardless of the maneuvers chosen by B.

Three representative real-space trajectories are shown in
Figure 5.2. The initial relative geometries are indicated in Figure
5.1 as the points Pl, PZ and P3. These preliminary results indicate
that relatively simple approximate maneuvering rules may be devised
for both pursuer and evader, but that relative heading is an import-
ant state variable in the development of these rules. More precise
conclusions must await the completion of the maneuver charts for

other values of the relative heading.
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NOTATION:
= - ursuer evader
ve=l1l, 0, =1 A WINS P 7\
max A, B
L "RL
Vp = .9, op =1.5 turn/  \‘turn right,
left then left
BRL ARL LR
P;
DRAW DRAW
| L
-1 1

Figure 5.1(a) Tail Chase Capture Regions, H = 0°
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A WINS

DRAW

Figure 5.1(b) Tail Chase Capture Regions, H = 15°
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Initial Position P

1 ;

Z'COLLISXO.\'

Initial Position P, - ‘ Initial Position P

‘Figure 5.2 Barrier Maneuvers in Real Space
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5.2 RANGE-LIMITED END CONDITION

.If the terminal range is bounded for both aircraft, while
the terminai heading is arbitrary, with capture again occurring
at zero steering error, a very different set of capture regions can
be expected. In this differential game, which employs the dynamic
equations of Section 3.3, the faster aircraft can always escape
from the Slower aircraft. This occurs, for eXample, if the initial
range is largé enough. Furthermore, in this game, the maximum turn

rate is not so critical a parameter as in the heading-limited case.

Previous solutions to this game[z] have considered different
parameters, for which one aircraft héd an infinite range weapon.
The resulting barriers divided the state space into two reglons
corresponding to A wins and B wins. In the present report, both
aircraft will be constrained to f1n1te range weapons. It will be
shown that for this case three solution regions exist, corresponding

to A wins, B wins,; and draw.

To illustrate the capture regions in the range-limited end

condition, the following parameters are chosen:

V =‘ 1.0 w = 1.0 l - .5

A Amax A

Vg = .9 wy = 2.0 . lB = .6
max

~ where lA and lB are the weapon ranges for aircraft A and B.

The computations have been developed only for the parallel-heading
initial condition (H = 0°) and the capture regions are as shown in
Figure 5.3. Two marked differences are apparent between these re-
sults and those given in Figure 5.1(a) for the heading-limited end
condition. These are:

3

1. The maneuverablllty of B is relatlvely unimportant
when the terminal heading is free, In this case, the
size of B's capture region depends pr1nc1pa11y on

the weapon range, £y
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Figure 5.3 Range-Limited Capture Regions, Hf = 0°
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2. In the range—limited end condition, singular arcs
(dashes) can occur for both aircraft. This is because,
on the barrier, the maneuvers of each can be strongly

influenced by the finite weapon range of the other.:

Real-space trajectories of both aircraft are illustrated in
Figure 5.4, corresponding to the three relative initial positions
labelled Pl’

capture region corresponds to the simultaneous kill condition,

P2 and Py in Figure 5.3. The forward portion of A's

For example, from initial position Pl’ simultaneous kill requires
A to perform a three-part maneuver in response to B's simple
"right turn. Vehicle A's three-part maneuver. (left, straight,
right) precedes a head-on shot for both vehicles, which occurs

at a range of .ZA < ,ZB. That is, A has eluded B until B is also
within range. - '

Other barrier segments are found for the near-miss end
condition, and these can occur as either one-part or two-part
maneuvers. The two cases illustrated terminate at maximum
range (‘eA or,ZB), but near-misses can also end at shorter

ranges, as.shown in Figure 4.4.

The method used for displaying the solution to this problem
~develops loci at constant values of the relative heading. These |
) loci are merely candidates for barrier trajectories, and they need
not be continuous or part of a closed contour. That is, the various
finite line segments on which the barrier paths end (Table I)
correspond to other finite line segments at a given relative head-
ing, and only the relevant portions of these line segments are

shown in Figures 5.1 and 5.3. That is, for example, the point P2
of Figure 5.1(b) marks the intersection of two segments which
actually extend beyond thi§ corner. Likewise, the barrier BLS AL

of Figure 5.3 is discontinued where it intersects AP BRS'
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6.0 APPLICATION AND GENERALIZATION OF RESULTS

The dynamic model used here for the aerial combat problem
includes as parameters the speeds, maximum turn rates and the
required end conditions for both aircraft which can include in-

- equality constraints on range and/or relative heading.

Even for this simplified dynamic model, extensive para-
metric studies are possible. Such studies would determine the
capture conditions and as;ociated maneuvers for practical ranges
of speeds, turn rates, etc., with applications as described in the

following subsections.
6.1 NEW TACTICAL MANEUVER RULES

When the parameters are numerically fixed, the solution to
the fundamental problem of #vle-determination consists of the
boundaries in state space corresponding to the near-miss and
collision end conditions. This portion of the problem does not
specify the maneuvers to be used by the aircraft when fhé relative
state is not on these "barriers". But, capture and escape are
guaranteed for initial conditions just "inside'" or just 'outside"
of the barriers, if the pursué} and evader, respectively, maneuver
optimally in the neighborhood of these barriers. This is to
emphasize that: V

1. Tactical maneuvers exist which guarantee a win for either

aircraft, in some region (range, bearing and heading)
of state space. The location of the region depends on

the parameters and the definition of "win". .

2. Both capture regions grow larger if the evader maneuvers

non-optimally, and both decrease in size if the pursuer
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so maneuvers. Nothing useful can immediately be said

when both aircraft maneuver non-cptimally.

3. The tactical maneuvers have been shown to be hard
_turns or straight dashes at all times during the

combat engagement.

Wheﬁ the terminal geometry configuration is specified, it
is conjectured.that relatively simple approximate maneuver rules
ﬁay be deduced from the resulting optimal solutions and trajec-
tories. Since sharp turns represent the vast majority of the
maneuvers, it is only necessary for pursuer or evader to know

the direction of the turns as functions of the relative geometry.

New tactical maneuver rules are a reasonable hope for any
practical model of the aerial combat problem, and certain results
in this direction have already been found. For example, the turn
maneuvers 'right, straight, left" can occur for both aircrart, but
only when the slower, more maneuverable aircraft is pursuing in tﬁe
tail chas§ version of the problem. It is hoped that other interesting

and important results of this type will be determined as the solution
progresses.

6.2 PRELIMINARY DESIGN OF COMBAT AIRCRAFT

Combat aircraft can be designed competitively, if a particular
enemy aircraft and weapon system are known to be of interest. For
certain combat termination criteria, it is then possible to com-
pute the capture regions of both aircraft as the performance

parameters of the aircraft are varied through selected limits.

This type of analysis may show, for example, that a large
increase in»top speed has a very small influence on the capture
volume, aséuming the other aircraft parameters are constant. The
costs associated with improving the propulsion or aerodynamics can

then be directed to other aspects of the aircraft performance.
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This type of trade-off study is impossible to perform
without an understanding of the interlocking portions of the
problem. While it is generally agreed that the aircraft and
its guidance system (or pilot) function as a single system, the
optimization of this system requires that the performance cri-
teria be accurately defined. Although practical constraints
limit the range of applicability of results which can be ob-

" tained in this way, the benefits to be obtained from such

studies appear to be considerable.

6.3 VERIFICATION OF RESULTS BY COMPUTER SIMULATION

_ The results obtained by the methods described here can be
verified and/or modified by usiné computer simulation methods.

Such methods would replace the planar, constant speed, variable
turn rate equations of motion with more complex, three—dimensiohal,
nonlinear equations in which the maneuver transients are accurately
modelled. Powerplant limitations, aerodynamic nonlinearities and

control system parameters would all have some influence on these
Yexact equations''.

The process of verification would proceed on a point-by-
point basis, according to which an "approximate' point on the
barrier (x, y, H) is located "exactly' by applying the approximate
turn maneuvers to the exact equations of motion. As long as the v
ratios of speed and turn rates do not differ significantlf from
the values assumed in the approximate equations, the barrier con-.
tours should change only slightly from the approximate values.
Such verification methods have proven highly successful in the

development of collision avoidance maneuvers for ships[21].
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6.4 OTHER END CONDITIONS AND DYNAMIC MODELS

The strong dependence of the capture regions on the imposed
end conditions has shown that useful results require éareful defi-
nitions of '"capture." The end conditions are typically expressed
in terms of equalities or inequalities among the position and
heading state variables in the problem.

A modificaticn to the "tail chase' end conditions would in-
volve the specification of a '‘cone-angle,'" or terminal bearing of
the evading aircraft. This cone-angle is taken as zero in the
results shown in Sec. 5.1, but a positive value for this parameter
would add both to the realism and to the complexity of the compu-
tations. Bounding the terminal range for both aircraft is another
obvious and important refinement in the development of the tail- :
chase end condition. This addition td the problem definition would
" have the effect of-ensuring the existence of a third, '"no-contest" .
region in the state-space, because the faster aircraft could then '
always escape the sliwer, if the initial range is large enough.

~ The terminal range could be given a lower limit as well, and
this would have a strong influence on the shape of the capture
regions. The collision trajectofies, of course, would no longer
occur, and the capture region for aircraft A would begin some dis-
tance ahead of A, while that of B would begin at some distance g

behind A, when both are shown in axes fixed to A.

Another terminal condition of practical interest involves
the time interval during which the pursuer can keep the evader in
the pursuer's cone-angle. The pursuer's terminal maneuvers in thié
case would frequently involve intermediate turn rates which have
been shown to be unnecessary for the terminal conditions discussed .
~here. ‘
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It should be emphasized again that the optimal maneuvers
which have been derived and discussed thus far are associated
only with the '"barrier'" trajectories. That is, no maneuvers
are specified at arbitrary (intermediate) relative positions
and headings between or outside the barriers. It is expected
that maneuvers at intermediate positions could be determined
by assuming a switch line at a point midway between the com-

- puted right and left barrier traces, but this is merely a rule
of thumb with no theoretical justification. More formally, op-
timal solutions between the barriers must involve a different
value function than those for the games of kind studied in this
Teport. For example,'if the capture region for aircraft A is
known, the maneuvers at an interior point may be found on the
basis of optiﬁizing (in the min-max sense) the capture time.

This requires .the solution of the gdme<of degreé[l’lsl.

The effects of changing the dynamic model will be most
easily studied by first varying the constant parameters through
a wide range of practical interest. ‘If, as expected, the capture
regions show a small dependence on certain of the parameters,
then it is reasonable to conclude that these parameters can be
approximated by constants in any practical use of the results.

It may be found, for example, that while the aircraft velocities
change considerably during sharp turn‘maneuvers[4], these changes
do not appreciably affect the location of the barrier or the
associated maneuvers. Speed variations, of course, will change
the time required to perform a maneuver, as was found to occur

'during collision~-avoidance turns for ships[zz]

, but the maneuvers
themselves may be nearly insensitive to these refinements in the

dynamic model.
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