1,483 research outputs found

    Source deck compression and update program (CAPS)

    Get PDF
    Computer program for compressing program source decks and other data coded in Hollerith format is described. Compression of card image record by substitution of special code characters is discussed. Program is written for IBM 360/75/95 Release 19 computer

    Manufacture of cottage cheese from nonfat dry milk solids

    Get PDF
    Cover title

    Formalism and Deference in Administration Law

    Get PDF
    The topic for discussion is formalism and deference in administrative law. As we know, the landmark case of Chevron v. Natural Resources Defense Council has changed the face of modern administrative law. The panel will address the rightness and limitations of Chevron deference, especially in the context of agency decisions on the scope of the agencies’ jurisdictional mandates. Should the federal courts defer, or should they not defer in this context? We need guidance. Justices Scalia and Thomas recently differed from Chief Justice Roberts and Justices Kennedy and Alito on these issues. Who is right, and why? Does the answer depend in any measure on the growth of the administrative state, and are there larger issues of jurisprudential philosophy at stake? It may just come down to what you are really afraid of in this fundamental disagreement that the Justices are having. Chief Justice Roberts describes it as a “fundamental disagreement.” Are you afraid, as Justice Scalia discusses, of a lack of stability and chaos, of unaccountable federal judges running muckety-muck, deciding numerous issues in sundry ways, or as the Chief Justice recounts, are you afraid, in the words of Madison, of the “accumulation of all powers, legislative, executive, and judiciary, in the same hands” in a vast and evergrowing administrative state

    Maximising Social Interactions and Effectiveness within Distance Learning Courses: Cases from Construction

    Get PDF
    Advanced Internet technologies have revolutionised the delivery of distance learning education. As a result, the physical proximity between learners and the learning providers has become less important. However, whilst the pervasiveness of these technological developments has reached unprecedented levels, critics argue that the student learning experience is still not as effective as conventional face-to-face delivery. In this regard, surveys of distance learning courses reveal that there is often a lack of social interaction attributed to this method of delivery, which tends to leave learners feeling isolated due to a lack of engagement, direction, guidance and support by the tutor. This paper defines and conceptualises this phenomenon by investigating the extent to which distance-learning programmes provide the social interactions of an equivalent traditional classroom setting. In this respect, two distance learning case studies were investigated, covering the UK and Slovenian markets respectively. Research findings identified that delivery success is strongly dependent on the particular context to which the specific distance learning course is designed, structured and augmented. It is therefore recommended that designers of distance learning courses should balance the tensions and nuances associated with commercial viability and pedagogic effectiveness

    The temperature and chronology of heavy-element synthesis in low-mass stars

    Full text link
    Roughly half of the heavy elements (atomic mass greater than that of iron) are believed to be synthesized in the late evolutionary stages of stars with masses between 0.8 and 8 solar masses. Deep inside the star, nuclei (mainly iron) capture neutrons and progressively build up (through the slow-neutron-capture process, or s-process) heavier elements that are subsequently brought to the stellar surface by convection. Two neutron sources, activated at distinct temperatures, have been proposed: 13C and 22Ne, each releasing one neutron per alpha-particle (4He) captured. To explain the measured stellar abundances, stellar evolution models invoking the 13C neutron source (which operates at temperatures of about one hundred million kelvin) are favoured. Isotopic ratios in primitive meteorites, however, reflecting nucleosynthesis in the previous generations of stars that contributed material to the Solar System, point to higher temperatures (more than three hundred million kelvin), requiring at least a late activation of 22Ne. Here we report a determination of the s-process temperature directly in evolved low-mass giant stars, using zirconium and niobium abundances, independently of stellar evolution models. The derived temperature supports 13C as the s-process neutron source. The radioactive pair 93Zr-93Nb used to estimate the s-process temperature also provides, together with the pair 99Tc-99Ru, chronometric information on the time elapsed since the start of the s-process, which we determine to be one million to three million years.Comment: 30 pages, 10 figure

    One Hundred Years of Observations of the Be Star HDE 245770 (the X-ray Binary A0535+26/V725 Tau): The End of an Active Phase

    Full text link
    UBV observations of the X-ray binary system A0535+26/V725 Tau at the Crimean Station of the Sternberg Astronomical Institute in 1980-1998 are presented. Based on our and published data, we analyze the photometric history of the star from 1898.Comment: Translated from Pis'ma Astronomicheskii Zhurnal, Vol. 26, No. 1, 2000, pp. 13-2

    The Stellar Composition of the Star Formation Region CMa R1 -- III. A new outburst of the Be star component in Z CMa

    Full text link
    We report on a recent event in which, after more than a decade of slowly fading, the visual brightness of the massive young binary Z CMa suddenly started to rise by about 1 magnitude in December 1999, followed by a rapid decline to its previous brightness over the next six months. This behaviour is similar to that exhibited by this system around its eruption in February 1987. A comparison of the intrinsic luminosities of the system with recent evolutionary calculations shows that Z CMa may consist of a 16 M_sun B0 IIIe primary star and a ~ 3 M_sun FUOr secondary with a common age of ~ 3 x 10^5 yr. We also compare new high-resolution spectra obtained in Jan. and Feb. 2000, during the recent rise in brightness, with archive data from 1991 and 1996. The spectra are rich in emission lines, which originate from the envelope of the early B-type primary star. The strength of these emission lines increased strongly with the brightness of Z CMa. We interpret the collected spectral data in terms of an accretion disc with atmosphere around the Herbig B0e component of Z CMa, which has expanded during the outbursts of 1987 and 2000. A high resolution profile of the 6300 A [O I] emission line, obtained by us in March 2002 shows an increase in flux and a prominent blue shoulder to the feature extending to ~ -700 km/s, which was much fainter in the pre-outburst spectra. We propose that this change in profile is a result of a strong change in the collimation of a jet, as a result of the outburst at the start of this century.Comment: 22 pages, 12 figures, accepted for publication in MNRA

    Neurology

    Get PDF
    Contains reports on nineteen research projects.United States Public Health Service (B-3055-3, B-3090-3, 38101-22)United States Navy, Office of Naval Research (Contract Nonr-1841(70))Unites States Air Force (AF33(616)-7588, AFAOSR 155-63)United States Army Chemical Corps (DA-18-108-405-Cml-942)National Institutes of Health (Grant MH-04734-03)National Aeronautics and Space Administration (Grant NsG-496

    Ground and In-Flight Calibration of the OSIRIS-REx Camera Suite

    Get PDF
    The OSIRIS-REx Camera Suite (OCAMS) onboard the OSIRIS-REx spacecraft is used to study the shape and surface of the mission’s target, asteroid (101955) Bennu, in support of the selection of a sampling site. We present calibration methods and results for the three OCAMS cameras—MapCam, PolyCam, and SamCam—using data from pre-flight and in-flight calibration campaigns. Pre-flight calibrations established a baseline for a variety of camera properties, including bias and dark behavior, flat fields, stray light, and radiometric calibration. In-flight activities updated these calibrations where possible, allowing us to confidently measure Bennu’s surface. Accurate calibration is critical not only for establishing a global understanding of Bennu, but also for enabling analyses of potential sampling locations and for providing scientific context for the returned sample
    corecore