4 research outputs found

    Synthesis of oligo- and polythiophenes in zeolite hosts

    Get PDF
    Oligomers and polymers of thiophene derivatives were synthesized in the channels of zeolite Y and mordenite. Intrazeolite oxidation of monomers such as thiophene , 3- methylthiophene , and bithiophene by Fe(lll) or Cu(ll) ions results in formation of insoluble polymers that have spectroscopic properties similar to the corresponding bulk polymers. The zeolites containing the polymers are nonconducting, but when extracted from the host, the polymers show d.c. conductivities typical for t he bulk materials. Oligothiophene species with welldefined electronic transitions could be produced in acidic zeolite Y

    Polythiophenes and oligothiophenes in zeolite hosts

    Get PDF
    The polymerization of different thiophenes in the channels of molecular sieve zeolite hosts is described. Thiophene, 3-methyIthiophene, 2,2'-bithiophene, and terthiophene were introduced into dehydrated proton-, Cu(II)- or Fe(III)-containing zeolites (NaY and Na-mordenite) from organic solvents or vapor-phase. In the large-pore hosts, green-black products are formed from the monomers within several minutes. Spectroscopic characterization (IR, UV-NIR) confirms the formation of oxidized polymer chains in the zeolite channels. UV-Near IR reflectance spectra of the zeolite/polythiophene samples exhibit a broad absorption from 500 to about 2500 nm as the bulk and not the resolved spectra of short oligomers, thus fairly long polymer chains are formed in the zeolites. Conducting polymers can be recovered after dissolution of the zeolite host in HF. 2, 2'-bithiophene and a-terthiophene in acidic H2Y and U^Y zeolites (2 and 6 protons per super cage/ß-cage) yield yellow-green and purple products, respectively. UV-NIR reflectance data indicate that the acidic zeolite hosts oxidize the thiophene oligomers to yield stable radical cations and dications in their channel systems

    Hipparcos open clusters and stellar evolution

    Get PDF
    By relying on recently improved Hipparcos parallaxes for the Hyades, Pleiades and Ursa Major clusters we find that stellar models with updated physical inputs nicely reproduce the location in the color magnitude diagram of main sequence stars of different metallicities. Stars in the helium burning phase are also discussed, showing that the luminosity of giants in the Hyades, Praesepe and Ursa Major clusters appears to be in reasonable agreement with theoretical predictions. A short discussion concerning the current evolutionary scenarios closes the paper.Comment: 5 pages, 6 Postscript figures, accepted by MNRA

    Stellar population models at high spectral resolution

    Get PDF
    We present new, high-to-intermediate spectral resolution stellar population models, based on four popular libraries of empirical stellar spectra, namely Pickles, ELODIE, STELIB and MILES. These new models are the same as our previous models, but with higher resolution and based on empirical stellar spectra, while keeping other ingredients the same including the stellar energetics, the atmospheric parameters and the treatment of the Thermally-Pulsating Asymptotic Giant Branch and the Horizontal Branch morphology. We further compute very high resolution (R=20,000) models based on the theoretical stellar library MARCS which extends to the near-infrared. We therefore provide merged high resolution stellar population models, extending from ~1000 AA to 25,000 AA. We compare how these libraries perform in stellar population models and highlight spectral regions where discrepancies are found. We confirm our previous findings that the flux around the V-band is lower (in a normalised sense) in models based on empirical libraries than in those based on the BaSeL-Kurucz library, which results in a bluer B-V colour. Most noticeably the theoretical library MARCS gives results fully consistent with the empirical libraries. This same effect is also found in other models using MILES, namely Vazdekis et al. and Conroy & Gunn, even though the latter authors reach the opposite conclusion. The bluer predicted B-V colour (by 0.05 magnitudes in our models) is in better agreement with both the colours of Luminous Red Galaxies and globular cluster data. We test the models on their ability to reproduce, through full spectral fitting, the ages and metallicities of galactic globular clusters as derived from CMD fitting and find overall good agreement. {Abridged}Comment: 30 pages, 36 figures, Monthly Notices of the Royal Astronomical Society in pres
    corecore