6 research outputs found

    Developmental speed affects ecological stoichiometry and adult fat reserves in Drosophila melanogaster

    Get PDF
    The elemental composition of organisms belongs to a suite of functional traits that change during development in response to environmental conditions. However, associations between adaptive variations in developmental speed and elemental body composition are not well understood. We compared body mass, elemental body composition, food uptake and fat metabolism of Drosophila melanogaster male fruit flies in relation to their larval development speed. Slowly developing flies had higher body carbon concentration than rapidly developing and intermediate flies. Rapidly developing flies had the highest body nitrogen concentration, while slowly developing flies had higher body nitrogen levels than flies with intermediate speed of development. The carbon-to-nitrogen ratio was therefore lower in rapidly developing flies than in slow and intermediate flies. We also had a group of flies grown individually and their body mass and elemental body composition were similar to those of rapidly developing individuals grown in groups. This suggests that rapid growth is not suppressed by stress. Feeding rates were lowest in the slowly developing flies. The amount of triacylglycerides was highest in the flies with intermediate developmental speed which optimizes development under many climatic conditions. Although low food intake slows down developmental speed and the accumulation of body fat reserves in slowly developing flies, their phenotype conceivably facilitates survival under higher stochasticity of their environments. Rapidly developing flies grew with less emphasis on storage build-up. Overall, this study shoes that a combination of bet-hedging, adaptive tracking and developmental plasticity enables fruit flies to respond adaptively to environmental uncertainty.</p

    Functionally richer communities improve ecosystem functioning: Dung removal and secondary seed dispersal by dung beetles in the Western Palaearctic

    Get PDF
    Aim: In several ecosystems, the diversity of functional species traits has been shown to have a stronger effect on ecosystem functioning than taxonomic diversity alone. However, few studies have explored this idea at a large geographical scale. In a multisite experiment, we unravelled the relationship between ecosystem function and functional completeness of species assemblages using dung beetles as a model group, focusing on dung removal and secondary seed dispersal. Location: Seventeen grassland locations across the Western Palaearctic. Methods: We used a randomized block design with different exclosure types to control the dung and seed removing activities of individual functional groups of the local dung beetle assemblage. We classified dung beetle species according to resource specialization and into functional groups based on dung processing behaviour (dwellers, tunnellers, rollers) and body size (small, large). Additionally, we assessed the role of other soil macro‐invertebrates. By sampling the dung beetle community and measuring the remaining dung and seeds after the experiment, the impact of each functional group was estimated. Results: Dung beetle assemblages differed along a north–south and east–west gradient. Dwellers dominated northernmost sites, whereas at lower latitudes we observed more tunnellers and rollers indicating a functional shift. Resource specialists were more abundant in southern and eastern areas. Overall, functional group diversity enhanced dung removal. More dung (+46.9%) and seeds (+32.1%) were removed in the southern sites and tunnellers and rollers were more effective. At the northernmost sites, where tunnellers were scarce or absent, other soil macro‐invertebrates removed the majority of dung. Main conclusions: The conservation of functionally complete dung beetle assemblages is crucial to maintain the ecosystem functions provided by dung beetles. Given the latitudinal variation in functional group diversity, it is reasonable to expect compositional changes due to climate change. These changes could lead to increased dung removal and a higher secondary seed dispersal rate in northern regions

    Dung beetle assemblages, dung removal and secondary seed dispersal: data from a large-scale, multi-site experiment in the Western Palaearctic

    Get PDF
    By manipulating faeces during feeding and breeding, dung beetles (Coleoptera: Scarabaeidae) fulfil important ecosystem functions in terrestrial ecosystems throughout the world. In a pan-European multi-site experiment (MSE), we estimated the ecosystem functions of dung removal and secondary seed dispersal by differing combinations of dung beetle functional groups. Therefore, we classified dung beetles into five functional groups according to their body size and dung manipulation method: dwellers, large and small tunnelers, and large and small rollers. Furthermore, we set up a dung beetle sampling database containing all sampled dung beetles during the project. By identifying dung beetle specimens to the species level, we obtained a detailed insight into the dung beetle communities at each study location. By establishing experimental plots allowing and inhibiting specific combinations of functional groups in the local dung beetle assemblage from removing dung and seeds, we estimated the role of each group in dung removal and secondary seed dispersal during a 4-week period. We performed all experiments in grazed (semi-)natural grasslands, and used different dung types (cattle, horse, sheep, goat or red deer) to match the herbivore species grazing in close vicinity of each of the study areas. Simultaneously, we sampled dung beetle assemblages by using pitfalls baited with the same dung types as used in the experiments. This data paper documents two datasets collected in the framework of this MSE project. All the experiments took place between 2013 and 2016 at 17 study sites in 10 countries and 11 biogeographic zones. The entire dung beetle sampling dataset was published as a sampling event dataset at GBIF. The dataset includes the sampling results of all 17 study sites, which contain 1,050 sampling events and 4,362 occurrence records of 94 species. The second dataset contains the results of the dung removal and secondary seed dispersal experiments in which we used 11 experimental treatments and the five dung types mentioned above. This experimental results dataset holds all experimental results of the MSE project (11,537 records), and was published in the online data repository Zenodo

    Link between elevated locomotor activity and the spike bursting of antennal thermosensitive neurons in the carabid beetle Pterostichus oblongopunctatus

    Get PDF
    Many aspects of ectothermic life are affected by external temperature conditions. Therefore, thermosensation and thermoregulation are crucial for survival of ground dwelling carabid beetles. Research in sensory physiology with Pterostichus oblongopunctatus has shown change in the reaction of antennal thermoreceptor neurons at temperatures above the P. oblongopunctatus’s preferred temperature. From 25 °C, these neurons in dome shaped sensilla start to change from regular impulse firing to firing in bursts. We hypothesized that temperature-dependent impulse bursts are involved in P. oblongopunctatus’s behavioural thermoregulation. Behavioural experiments were carried out on the arena inside an environmental test chamber, and in two different temperature conditions – one with linearly increasing temperature, and the other with constant temperature. The temperature was increased from 10 °C to 40 °C linearly during 50 min on first case and with 5 degree steps on second case with duration 50 min each step. Locomotion parameters (velocity and travelled distance) were measured using an automated video tracking system. We observed both low and high activity zones in P. oblongopunctatus. The threshold temperature for changing between zones occurred was at 25.8 °C. This indicates a link between spike burst of antennal thermoreceptor neurons and behavioural thermoregulation in P. oblongopunctatus

    Neural Code for Ambient Heat Detection in Elaterid Beetles

    No full text
    Environmental thermal conditions play a major role at all levels of biological organization; however, there is little information on noxious high temperature sensation crucial in behavioral thermoregulation and survival of small ectothermic animals such as insects. So far, a capability to unambiguously encode heat has been demonstrated only for the sensory triad of the spike bursting thermo- and two bimodal hygrothermoreceptor neurons located in the antennal dome-shaped sensilla (DSS) in a carabid beetle. We used extracellular single sensillum recording in the range of 20–45C to demonstrate that a similar sensory triad in the elaterid Agriotes obscurus also produces high temperature-induced bursty spike trains. Several parameters of the bursts are temperature dependent, allowing the neurons in a certain order to encode different, but partly overlapping ranges of heat up to lethal levels in a graded manner. ISI in a burst is the most useful parameter out of six. Our findings consider spike bursting as a general, fundamental quality of the classical sensory triad of antennal thermo- and hygro-thermoreceptor neurons widespread in many insect groups, being a flexible and reliable mode of coding unfavorably high temperatures. The possible involvement of spike bursting in behavioral thermoregulation of the beetles is discussed. By contrast, the mean firing rate of the neurons in regular and bursty spike trains combined does not carry useful thermal information at the high end of noxious heat
    corecore